Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\left(n^2+1\right)\left(n^2+4\right)\)
\(=n\left(n^2-4+5\right)\left(n^2-1+5\right)\)
\(=n\left[\left(n-2\right)\left(n+2\right)+5\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\left[n\left(n-2\right)\left(n+2\right)+5n\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(+5n^2\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Vì ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) là tích 5 số nguyên liên tiếp
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 5
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) + 5n^2( n - 2 )( n - 1 )( n + 1 )( n + 2 ) chia hết cho 5
\(\Rightarrow n\left(n^2+1\right)\left(n^2+4\right)⋮5\)
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
khó thế ai làm đc
Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM