Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) => \(\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)
<=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\). Theo tính chất dãy tỉ số bằng nhau
=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-acy+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) = 0
=> \(bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\) (1)
\(cx-az=0\Rightarrow\frac{x}{a}=\frac{z}{c}\) (2)
Từ (1)(2) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-cya}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-cyz+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{c}=\frac{y}{b}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)