Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em thảo khảo phần tính tỉ lệ độ dài các cạnh tại đây:
Câu hỏi của Đỗ Huy Hiển - Toán lớp 7 - Học toán với OnlineMath
Sau đó ta có: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{31}=\frac{62}{31}=2\)
\(\Rightarrow a=20\left(cm\right);b=30\left(cm\right);c=12\left(cm\right)\)

TA có
2S = a.ha = b.hb = c.hc
<=> 3a = 4b = 5c
<=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}=t\) ( t > 0 )
=> a= 20t ; b = 15t ; c = 12t
b^2 + c^2 = (15t)^2 + ( 12t)^2 = 225t^2 + 144t^2 = 369t^2 < 400t^2 = (20t)^2 = a^2
=> b^2 + c^2 < a^2
Ta có : a.ha = b.hb = c.hc (cùng = 2 lần diện tích tam giác)
=> 3a = 4b = 5c => \(\frac{3a}{60}=\frac{4b}{60}=\frac{5c}{60}\)=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\) = k ( k > 0 ) => a = 20k ; b = 15.k; c = 12.k
=> a2 = 400k2; b2 = 225k2 ; c2 = 144k2
=> b2 + c2 = 369k2 < 400.k2 => b2 + c2 < a2
Vậy....

Bài 1:
Giải
Vì x và y là hai đại lượng tỉ lệ thuận nên: \(y=kx\left(k\ne0\right)\)
\(x_1,x_2\)là hai giá trị của x
\(y_1,y_2\)là hai giá trị tương ứng của y
nên: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=k\)
Áp dụng tính chất dãy các tỉ số bằng nhau \(\Rightarrow k=\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_1+x_{ }_2}{y_1+y_2}=\frac{6}{12}=\frac{1}{2}\)
Vậy \(k=\frac{1}{2}\).
Bài 2:
Giải
Gọi độ dài ba cạnh của tam giác đó là a,b,c \(\left(a,b,c>0;a:b:c=2:3:4\right)\) với ba chiều cao tương ứng là x,y,z.
Gọi diện tích tam giác có ba cạnh tỉ lệ với 2,3,4 là S \(\Rightarrow a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\)
Theo đầu bài, ta có: \(a:b:c=2:3:4\)
\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\)\(\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)
\(\Rightarrow\)\(2x=3y=4z\)
\(\Rightarrow\)\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)hay \(x:y:z=6:4:3\)
Vậy ba chiều cao tương ứng với ba cạnh của tam giác tỉ lệ với 2,3,4 tỉ lệ với 6,4,3.

Giải:
Gọi 3 cạnh tương ứng của 3 đường cao \(h_a,h_b,h_c\) là a, b, c \(\left(a,b,c>0\right)\)
Ta có: \(\frac{a.h_a}{2}=\frac{b.h_b}{2}=\frac{c.h_c}{2}\)
\(\Rightarrow a.h_a=b.h_b=c.h_c\)
\(\Rightarrow4a.\frac{h_a}{4}=5b.\frac{h_b}{5}=6c.\frac{h_c}{6}\)
Mà \(\frac{h_a}{4}=\frac{h_b}{5}=\frac{h_c}{6}\)
\(\Rightarrow4a=5b=6c\)
\(\Rightarrow\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60\)
\(\left\{\begin{matrix}\frac{a}{\frac{1}{4}}=60\\\frac{b}{\frac{1}{5}}=60\\\frac{c}{\frac{1}{6}}=60\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=15\\b=12\\c=10\end{matrix}\right.\)
Vậy độ dài 3 cạnh của t/g lần lượt là 15, 12, 10
gọi 3 đường cao ha ; hb;hc lần lượt là a, b, c
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và a+b+c=37
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{37}{15}\)
=>\(\frac{a}{4}=\frac{37}{15}=>a=\frac{37.4}{15}\)=>a=\(\frac{148}{15}\)
\(\frac{b}{5}=\frac{37}{15}=>b=\frac{37.5}{15}=>b=\frac{37}{3}\)
\(\frac{c}{6}=\frac{37}{15}=>c=\frac{37.6}{15}=>c=\frac{222}{15}\)
Vậy độ dài 3 đường cao của tam giác ABC là \(\frac{148}{15}cm;\frac{37}{3}cm;\frac{222}{15}cm\)