K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Bài 1:

                                         Giải

Vì x và y là hai đại lượng tỉ lệ thuận nên: \(y=kx\left(k\ne0\right)\)

\(x_1,x_2\)là hai giá trị của x

\(y_1,y_2\)là hai giá trị tương ứng của y

nên: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=k\)

Áp dụng tính chất dãy các tỉ số bằng nhau \(\Rightarrow k=\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_1+x_{ }_2}{y_1+y_2}=\frac{6}{12}=\frac{1}{2}\)

Vậy  \(k=\frac{1}{2}\).

Bài 2:

                                            Giải

Gọi độ dài ba cạnh của tam giác đó là a,b,c \(\left(a,b,c>0;a:b:c=2:3:4\right)\) với ba chiều cao tương ứng là x,y,z.

Gọi diện tích tam giác có ba cạnh tỉ lệ với 2,3,4 là S \(\Rightarrow a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\)

Theo đầu bài, ta có: \(a:b:c=2:3:4\)

\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\)\(\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)

\(\Rightarrow\)\(2x=3y=4z\)

\(\Rightarrow\)\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)hay \(x:y:z=6:4:3\)

Vậy ba chiều cao tương ứng với ba cạnh của tam giác tỉ lệ với 2,3,4 tỉ lệ với 6,4,3.

12 tháng 1 2016

vì x và y là hai đại lượng tỷ lệ thuận nên:

\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\)            (1)

từ (1) => x=\(\frac{1}{7}y^{ }\)

vậy nếu x=3 thì y = 7.3=21

 

10 tháng 12 2017

co ai biet lam ko

Vì x,y là hai đại lượng tỉ lệ thuận

nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{-2}{6}=\dfrac{-1}{3}\)

nên \(y_1=-3x_1\)

Vì x và y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)

\(\Leftrightarrow2y_1=5y_2\)

hay \(\dfrac{y_1}{5}=\dfrac{y_2}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{y_1}{5}=\dfrac{y_2}{2}=\dfrac{3y_1+4y_2}{3\cdot5+4\cdot2}=\dfrac{46}{23}=2\)

Do đó: \(y_1=10\)

\(k=y_1\cdot x_1=10\cdot2=20\)

=>y=20/x