Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=a+b=c+d=e+f.M=a+b=c+d=e+f.
⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)⇒{a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)
Kết hợp (1),(2)và(3)(1),(2)và(3)
⇒M∈BCNN(18;24;30).⇒M∈BCNN(18;24;30).
⇒M∈{0;360;720;1080;...}⇒M∈{0;360;720;1080;...}
Mà MM là số tự nhiên nhỏ nhất có 4 chữ số.
⇒M=1080.⇒M=1080.
Vậy M=1080.
nhớ cho mình 1 k nhé chúc bạn học tốt
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a,b,c \(\ne\)0)
=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{c+a-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\)=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Khi đó, ta có: B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
B = \(\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)\)
B = \(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
Vậy ...
(xem lại đề)
Cho a,b,c là 3 số thực khác 0, thỏa mãn điều kiện:
a+b-c / c = b+c-a /a = c+a-b / b
Hãy tính B = ( 1+b/a).(1+a/c).(1+c/b)
b)Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
\(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2+1\right)\left(a^2-1\right)\)
\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)
Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
A=(1-ab)(1-bc)(1-ca)(1+ab)(1+bc)(1+ca)
=(a- bb)(b- cc)(a- ca)(a+bb)(b+cc)(a+ca)
Vì a-b-c=0 nên a-b=c , b-c=a , a-c=b nên :
A=cb.ac. ba−cb.−ac.−ba
= 1
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=a\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+b\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+c\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)=\(\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)
\(=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{a+c}+\frac{a}{a+c}\right)\)
=\(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(1+1+1\right)=2010.\frac{1}{3}=670\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=667\)
cam on nhiu!!!!!!!!!