Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=a\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+b\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+c\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)=\(\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)
\(=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{a+c}+\frac{a}{a+c}\right)\)
=\(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(1+1+1\right)=2010.\frac{1}{3}=670\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=667\)
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a,b,c \(\ne\)0)
=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{c+a-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\)=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Khi đó, ta có: B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
B = \(\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)\)
B = \(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
Vậy ...
(xem lại đề)
Cho a,b,c là 3 số thực khác 0, thỏa mãn điều kiện:
a+b-c / c = b+c-a /a = c+a-b / b
Hãy tính B = ( 1+b/a).(1+a/c).(1+c/b)
M=a+b=c+d=e+f.M=a+b=c+d=e+f.
⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)⇒{a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)
Kết hợp (1),(2)và(3)(1),(2)và(3)
⇒M∈BCNN(18;24;30).⇒M∈BCNN(18;24;30).
⇒M∈{0;360;720;1080;...}⇒M∈{0;360;720;1080;...}
Mà MM là số tự nhiên nhỏ nhất có 4 chữ số.
⇒M=1080.⇒M=1080.
Vậy M=1080.
nhớ cho mình 1 k nhé chúc bạn học tốt
a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)
\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)
\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)
Câu 1 :
Ta có \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)
Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)
\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)
Do : \(a-b=15\)
\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)
\(\Rightarrow k=5.2=10\)
\(\Rightarrow a=2.10=20\)
\(\Rightarrow b=\frac{3.10}{2}=15\)
\(\Rightarrow c=\frac{40}{3}\)
BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):
\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)
=> cả 2 thừa số đều lẻ.
=>\(2018^a+2018a+b\)là số lẻ (1)
Với a khác 0,từ (1) suy ra:
b lẻ.
=>3b+1 chẵn
=>2008a+3b+1 chẵn(loại)
=>a=0,thay vào đề bài,ta có:
(3b+1)(b+1)=225=3*75= 5*45=9*25
do 3b+1>b+1 và 3b+1 không chia hết cho 3
\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)
vậy:a=0,b=8
moi hok lop 6 thoi