Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\) (1)
Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\) (2).
Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).
Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.
Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí
Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.
Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\) nên \(a=4\).
Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.
(*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):
Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên.
Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\))
, ta có đpcm
ta có \(n\in N\)
cho \(n\in\left(1..10\right)\)
từ 1...10 có 2 số 1 và 0 là co \(\sqrt[3]{n}\)bằng chính nó
từ 1...1000 có 1 số là 1000 vì nếu bỏ 3 chữ số tận cùng thì \(\sqrt[3]{1}=1\)
giả sử
Nếu x≥27 thì T=427(1+473+4a-27)
Do 427 chính phương nên T chính phương khi 1+473+4a-27 chính phương.
Đặt 1+473+4a-27=n2
Có n2> 4a-27 = (2a-27 )2 nên n2≥(2a-27+1)2
Suy ra 1+473+4a-27 ≥ (2a-27+1)2 = 4a-27+2a-26 +1
=> 473 ≥ 2 a-26
hay 73.2 ≥ a−26
vậy a ≤ 172
Thay a =172 có T = 427.(1+2145)2 là số chính phương.
Vậy a lớn nhất bằng 172
1/ Gọi số đó là \(\overline{xy}\Rightarrow x+y=10\)
Sau khi đổi chỗ ta có: \(\overline{yx}-\overline{xy}=36\Leftrightarrow\left(10y+x\right)-\left(10x+y\right)=36\)
\(\Leftrightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=10\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
\(\Rightarrow\) đó là số 37
2/ Do A, B đều thuộc (P) nên thay hoành độ vào ta có các tọa độ \(A\left(1;2\right);B\left(-2;8\right)\)
Gọi đường thẳng d đi qua A và B có phương trình \(y=ax+b\)
Thay tọa độ A, B vào d ta được hệ:
\(\left\{{}\begin{matrix}2=a.1+b\\8=a\left(-2\right)+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\-2a+b=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)
Vậy pt đường thẳng đó là \(y=-2x+4\)