Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Giải:
A B C D H M P Q N 1
Lấy P là trung điểm của BC, AP giao CD tại Q. Gọi N là trung điểm BD.
\(\Delta\)BDC có: P và N lần lượt là trung điểm của BC và BD => PN là đường trung bình \(\Delta\)BDC
=> PN // CD Hay PN // DQ.
\(\Delta\)NAP có: D là trung điểm AN (Dễ chứng minh); DQ // PN; Q thuộc AP
=> Q là trung điểm AP => AQ=PQ.
\(\Delta\)BHC có: P và M lần lượt là trung điểm của BC và CH => PM là đường trung bình \(\Delta\)BHC
=> PM // BH. Mà BH vuông góc HC => PM vuông góc HC (tại M) hay PM vuông góc CQ
\(\Delta\)ABC cân tại A có: P là trung điểm BC => AP vuông góc BC hay PQ vuông góc CP
Ta có: ^MPQ + ^MPC = ^CPQ = 900 .Mà ^MPC + ^MCP = 900 ( Do \(\Delta\)PMC vuông tại M)
=> ^MPQ = ^MCP => \(\Delta\)PMC ~ \(\Delta\)QMP (g.g) => \(\frac{MP}{MQ}=\frac{PC}{QP}\)
Lại có: AQ=PQ; PC=BP (cmt) => \(\frac{MP}{MQ}=\frac{BP}{AQ}\)
Góc AQM là góc ngoài \(\Delta\)CPQ => ^AQM = ^CPQ + ^C1 =900 + ^C1
Góc BPM là góc ngoài \(\Delta\)PMC => ^BPM = ^PMC + ^C1 = 900 + ^C1
Suy ra ^AQM = ^BPM
Xét \(\Delta\)MPB và \(\Delta\)MQA: ^BPM = ^AQM; \(\frac{BP}{AQ}=\frac{MP}{MQ}\)(cmt) => \(\Delta\)MPB ~ \(\Delta\)MQA (c.g.c)
=> ^BMP = ^AMQ. Mà ^BMP + ^BMD = 900 (PM vuông góc CD) => ^AMQ + ^BMD = 900
=> ^AMB = 900 => AM vuông góc với BM (đpcm).
ak ý bn đề là thế này ak
\(T\text{ìm}\)n\(\in\)N* sao cho: với mọi K là số tự nhiên thì \(n^k-n⋮1000\)
Ta có:\(\left(a+b\right)^3=\overline{ab}^2\)là số chính phương nên \(a+b\)là số chính phương.
Đặt \(a+b=x^2\)với \(x\inℕ^∗\)
\(\Rightarrow\overline{ab}^2=x^6\)
\(\Rightarrow x^3=\overline{ab}< 100\)và \(\overline{ab}>9\)
\(\Rightarrow9< \overline{ab}< 100\)
\(\Rightarrow9< x^3< 100\)
\(\Rightarrow2< x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Với \(x=3\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=3^6=729=27^2=\left(2+7\right)^3\left(TM\right)\)
Với \(x=4\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=4^6=4096=64^2\ne\left(6+4\right)^3\left(KTM\right)\)
Vậy số cần tìm là 27.
P/S:\(\left(h\right)\)là hoặc