Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\sqrt{AB+1}\in N\) thì AB+1 phải là số chính phương
Đặt 2008 = n
Ta có A = 11..1= \(\frac{10^n-1}{9}\)
B = 100..05 =10..00(2008 chữ số 0) +5 = 10n+5
\(\Rightarrow AB+1=\frac{10^n-1}{9}.\left(10^n+5\right)+1\)
\(=\frac{\left(10^n-1\right)\left(10^n+5\right)+9}{9}=\frac{10^{2n}+5.10^n-10^n-5+9}{9}\)
\(=\frac{10^{2n}+4.10^n+4}{9}=\frac{\left(10^n+2\right)^2}{9}=\left(\frac{10^n+2}{3}\right)^2\)
Mà 10n+2 có tổng các chữ số bằng 3 nên chia hết cho 3
Suy ra AB+1 là số chính phương
\(\Rightarrow\sqrt{AB+1}\)LÀ SỐ TỰ NHIÊN
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
+ Đặt \(k=111...1\) ( 2010 chữ số 1 ) \(\Rightarrow10^{2010}=9k+1\)
+ Ta có : \(ab+1=111...1\cdot\left(1000...0+5\right)+1=k\left(10^{2010}+5\right)+1\)
(2010 cs 1) (2010 cs 0)
\(\Rightarrow ab+1=k\left(9k+1+5\right)+1=9k^2+6k+1=\left(3k+1\right)^2\)
\(\Rightarrow\sqrt{ab+1}=3k+1\) là số tự nhiên
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)