Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi tọa độ điểm \(H=(a,b,c)\)
Ta có
\(\overrightarrow{AH}=(a,b,c-1)\perp \overrightarrow{BC}=(3,3,-1)\Rightarrow 3a+3b-(c-1)=0(1)\)
\(H\in BC\Rightarrow \) tồn tại \(k\in\mathbb{R}\) sao cho \(\overrightarrow {BH}=k\overrightarrow {BC}\)
\(\Leftrightarrow (a+1,b+2,c)=k(3,3,-1)\Rightarrow \frac{a+1}{3}=\frac{b+2}{3}=\frac{c}{-1}=k\)
\(\Rightarrow a=3k-1,b=3k-2,c=-k\)
Thay vào \((1)\Rightarrow 19k-8=0\rightarrow k=\frac{8}{19}\)
\(\Rightarrow (a,b,c)=\left(\frac{5}{19},\frac{-14}{19},\frac{-8}{19}\right)\)
Đáp án A.
\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)
\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
\(\overrightarrow{OA}=\left(1;0;-1\right)\) ; \(\overrightarrow{OB}=\left(1;-1;2\right)\)
\(\Rightarrow S_{OAB}=\dfrac{1}{2}\left|\left[\overrightarrow{OA};\overrightarrow{OB}\right]\right|=\dfrac{\sqrt{11}}{2}\)
\(B=\dfrac{6}{19}\cdot\dfrac{-7}{11}+\dfrac{6}{19}\cdot\dfrac{-4}{11}+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-\dfrac{4}{11}+\dfrac{-7}{11}\right)+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-1\right)+\dfrac{-13}{19}\)
\(B=-\dfrac{6}{19}+\dfrac{-13}{19}=-\dfrac{19}{19}=-1\)
Vậy \(B=-1\)
THANK BAN