K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Đặt: \(NL=1.2+2.3+3.4+...+98.99\) \(3NL=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+98.99.100-97.98.99=98.99.100\Leftrightarrow NL=\dfrac{98.99.100}{3}\)\(B=\dfrac{NL}{98.99.100}=\dfrac{98.99.100}{\dfrac{3}{98.99.100}}=\dfrac{1}{3}\)

12 tháng 7 2017

 Đặt s = 1.2+2.3+...+98.99

Suy ra 3s=1.2.(3-0)+2.3.(4-1)+...+98.99.(100-97)

=1.2.3-0.1.2+2.3.4-1.2.3+...+98.99.100-97.98.99

=98.99.100

Nên s=98.99.100:3

12 tháng 7 2017

Đặt A =1.2 + 2.3 + 3.4 + ... + 98.99 

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 

3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 98.99.(100 - 97) 

3A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100 

3A = 98.99.100 

=> A = 98.99.100 : 3 (đcmp) 

19 tháng 3

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}.\)\(\dfrac{24}{25}\)...\(\dfrac{9800}{9801}\)

A = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\)...\(\dfrac{98.100}{99.99}\)

A = \(\dfrac{1}{2}.\dfrac{100}{99}\)

A = \(\dfrac{50}{99}\) 

B = \(\dfrac{1.2+2.3+3.4+...+98.99}{98.99.100}\)

Đặt tử số là C Thì 

C = 1.2 + 2.3 + 3.4 +...+ 98.99

C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ...+ 98.99.3)

C = \(\dfrac{1}{3}\).[1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 98.99.(100-97)]

C = \(\dfrac{1}{3}\).[1.2.3 -1.2.3+2.3.4- 2.3.4 + 2.4.5 - .... - 97.98.99 + 98.99.100]

C = \(\dfrac{1}{3}\).98.99.100

B = \(\dfrac{\dfrac{1}{3}.98.99.100}{98.99.100}\) 

B = \(\dfrac{1}{3}\) = \(\dfrac{33}{99}\) < \(\dfrac{50}{99}\) = A

Vậy B < A

 

15 tháng 8 2023

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

28 tháng 3 2022

\(\dfrac{-4}{99}\)

28 tháng 3 2022

-4/99

 

20 tháng 4 2016

C=1*2+2*3+3*4+...+98*99

C=2+6+12+...+9702

C=2+9702

C=9704

vay C=9704

D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)

D=(99+198+297+...+9801)-(2+6+12+...+9702)

D=(99+9801)-(2+9702)

D=9900-9704

D=196

vay D=196

ai di qua dong tinh thi nho h cho minh nhe

27 tháng 9 2015

B = 1.2 + 3.4 + 5.6 +...+ 98.99

3B = 1.2(3-0) + 2.3(4-1) ...... 98.99 (100-97)

3B = 1.2.3-0.2.3.4-1 ......... 98.99.100-97

3B = ( 1.2.3+2.3.4+.....+98.99.100) - ( 0.1.2+ 1.2.3+.... + 97.98.99)

3B = 98.99.100

3B = 970200

  B = 323400

13 tháng 2 2023

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)

13 tháng 2 2023

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9.\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\).

AH
Akai Haruma
Giáo viên
22 tháng 9

Lời giải:

$A=1(1+1)+2(2+1)+3(3+1)+....+98(98+1)$

$=(1.1+2.2+3.3+...+98.98)+(1+2+3+...+98)$

$=B+(1+2+3+...+98)$

$\Rightarrow A-B=1+2+3+...+98=98.99:2=4851$