Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : S=1.2+2.3+3.4+........+98.99
3S=1.2.3+2.3.3+3.4.3+........+98.99.3
3S=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3S=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3S=98.99.100
Vậy : S=\(\frac{98.99.100}{3}\)
Thay S vào dãy 1.2+2.3+3.4+........+98.99 ta được :
\(A=\frac{\frac{98.99.100}{3}.y}{26950}\)=\(\frac{48}{7}\)
đến đây chắc tự tính được ( quy đồng 48/7 lên có mẫu bằng 26950 rồi sẽ có bài tìm y .... tự làm )
tử của VP=S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
thay S vào tử của VP ta được \(\frac{333300y}{26950}=\frac{12.6.2}{7.3}\)
\(\frac{609y}{49}=\frac{48}{7}\)
\(\frac{609y}{49}=\frac{336}{49}\)
=>609y=336
=>y=\(\frac{16}{29}\)
a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)
\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)
\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)
\(x=\dfrac{-9198}{4400}\)
a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(x+\dfrac{206}{100}=5\)
\(x=5-\dfrac{206}{100}\)
\(x=\dfrac{147}{50}\)
Vậy \(x=\dfrac{147}{50}\)
Khó quá mk chịu thôi bạn giải giùm mk nha
k mình đi
kb luôn nhé
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2017-1=2016\)
Vậy x = 2016
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)
1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)
Bn tự lm tiếp nhé!!! Sorry mk đang vội
|2x - 1|.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1996.1997}\right)\)= 1996
|2x - 1|.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1996}-\dfrac{1}{1997}\right)\)= 1996
|2x - 1|.\(\left(1-\dfrac{1}{1997}\right)\)= 1996
|2x - 1|. \(\dfrac{1996}{1997}\)= 1996
|2x - 1| = 1996 : \(\dfrac{1996}{1997}\)
|2x - 1| = 1996 . \(\dfrac{1997}{1996}\)
|2x - 1| = 1997
2x - 1 = ± 1997
TH1:
2x -1 = 1997
2x = 1997 +1
2x= 1998
x= 1998:2
x=999
TH2:
2x-1= -1997
2x= -1997+1
2x= -1996
x= -1996:2
x= -998
Vậy x ∈ {999; -998}
\(\dfrac{\left(1.2+2.3+3.4+...+98.99\right).x}{26950}=12\dfrac{6}{7}:\dfrac{-3}{2}\\ \Rightarrow\left(1.2+2.3+3.4+...+98.99\right).x:26950=\dfrac{90}{7}:\dfrac{-3}{2}\\ \left(1.2+2.3+3.4+...+98.99\right).x:26950=\dfrac{-60}{7}\\ \left(1.2+2.3+3.4+...+98.99\right).x=\dfrac{-60}{7}.26950\\ \left(1.2+2.3+3.4+...+98.99\right).x=-231000\\ \left\{\left[99.98.\left(98+2\right)\right]:3\right\}.x=-231000\\ 323400x=-231000\\ x=-231000:323400\\ x=\dfrac{-5}{7}\)
Đặt A=1.2+2.3+...+98.99
=>3A=1.2.3+2.3.(4-1)+...+98.99.(100-97)
=1.2.3-1.2.3+2.3.4-...-97.98.99+98.99.100
=98.99.100
=>A=98.99.100:3=323400
=>\(\dfrac{323400x}{26950}=\dfrac{90}{7}\cdot\dfrac{2}{-3}\)
<=>12x=\(-\dfrac{60}{7}\)
<=>x=\(-\dfrac{60}{12.7}\)
<=>x=\(-\dfrac{5}{7}\)
Vậy...