Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Ta có: \(\left(a+b-c\right)\left(b-c\right)\le0\)
\(\Leftrightarrow c^2+b^2-ac+ab\le2bc\)
Ta lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\le a^2+4bc+3ac+ab\)
Giờ ta cần chứng minh:
\(a^2+4bc+3ac+ab\le9bc\)
\(\Leftrightarrow a^2+3ac+ab\le5bc\)
Cái này là đúng vì a, b, c là 3 cạnh của tam giác và \(a\le b\le c\)
Gọi chiều cao tương ứng với các cạnh a, b, c là ha ; hb ; hc
Ta có \(S=\frac{1}{2}a.h_a=\frac{1}{2}b.h_b=\frac{1}{2}c.h_c\)
Theo quan hệ giữa đường vuông góc và đường xiên thì \(h_a\le b;h_b\le c;h_c\le a\)
Vậy nên \(S=\frac{1}{2}a.h_a\le\frac{1}{2}a.b\Rightarrow2S\le ab\)
Tương tự \(2S< bc;2S< ca\)
+) a2+b2+c2\(\ge\)3
Đặt a-1 =x , b-1 =y,c-1=z
\(\Rightarrow\)x,y,z \(\in\)[-1;1] và x+y+z=0
pttt: (x+1)2+(y+1)2+(z+1)2\(\ge\)3
\(\Leftrightarrow\)....\(\Leftrightarrow\)x2+y2+z2+2(x+y+z)+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2+3\(\ge\)3
\(\Leftrightarrow\)x2+y2+z2\(\ge\)0 (luôn đúng với mọi x,y,z)
+)a2+b2+c2\(\le\)5
Ta có a,b,c\(\in\)[0;2]\(\Rightarrow\)2-a\(\ge\)0 , 2-b\(\ge\)0 , 2-c\(\ge\)0
\(\Leftrightarrow\)(2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)2ab+2ac+2bc\(\ge\)4(a+b+c)+abc-8
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)12 + abc -8=4+abc (vì a+b+c=3)
Mà 4+abc\(\ge\)4 (vì a,b,c\(\in\)[0;2])
\(\Leftrightarrow\)2(ab+bc+ac)\(\ge\)4
\(\Leftrightarrow\)(a+b+c)2\(\ge\)4 +a2+b2+c2
mà a+b+c=3
\(\Leftrightarrow\)a2+b2+c2\(\le\)33-4=5
Dấu '=' xảy ra khi (a,b,c)=(0,1,2)và hoán vị vòng quanh
Vậy bdt được cm
1.
TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)
\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)
TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a
\(\Rightarrow a^{2011}< 0\)
Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)
Tương tự: \(c^{2011}\le1\)
\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)
2.
\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)
\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)
\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)
\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)
a. Ta có : \(\left(a-1\right)^2\ge0\forall a\)
\(\Rightarrow a^2-2a+1\ge0\\ \Rightarrow a^2+1\ge2a\left(đpcm\right)\)
b.
Theo câu a, ta có \(a^2+1\ge2a,\\ b^2+1\ge2b,\\ c^2+1\ge2c\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{a}{2a}=\frac{1}{2}\)
\(\frac{b}{b^2+1}\le\frac{b}{2b}=\frac{1}{2},\frac{c}{c^2+1}\le\frac{c}{2c}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{3}{2}\)
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5