Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(n^2-9)(n^2-1)
=(n-3)(n+3)(n-1)(n+1)
=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)(2k+4)
=16k(k+1)(k-1)(k+2)
Vì k;k+1;k-1;k+2là 4 số liên tiếp
nen k(k-1)(k+1)(k+2) chia hết cho 4!=24
=>A chia hết cho 384
Ta sẽ chứng minh với \(n\ge1\)thì \(P_n=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)=\frac{-2n-1}{2n-1}\)
Với \(n=1\)mệnh đề đúng vì \(1-4=-3=\frac{-2.1-1}{2.1-1}\)
Giả sử mệnh đề đúng với \(n=k\)tức là \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)=\frac{-2k-1}{2k-1}\)
Ta sẽ chứng minh mệnh đề đúng với \(n=k+1\)tức là chứng minh \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-\left(2k+3\right)}{2k+1}\)
Thật vậy \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-2k-1}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}\)
\(=\frac{-\left(2k+1\right)}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}=\frac{-\left(2k+3\right)}{2k+1}.\)
Theo nguyên lý quy nạp, mệnh đề đúng với mọi \(n\ge1\)
A là số lẻ
A=2k+1, k thuộc Z
A4+23=(2k+1)4+23=(2k+1)2.(2k+1)2+23=(4k^2+4k+1)(4k^2+4k+1)+23=(4k^2+4k).(4k^2+4k+1)+4k^2+4k+1+23
=4(k^2+k)(4k^2+4k+1)+4k^2+4k+24 chia hết cho 4
\(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp
Mà 3 số chẵn liên tiếp luôn \(⋮48\)
\(\Rightarrowđpcm\)
\(n^3+3n^2-n-3\)
\(=n^2\times\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\times\left(n^2-1\right)\)
\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)
Vì n là số lẻ nên \(n⋮̸2\)
\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)
\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)
\(\Rightarrow n^3+3n^2-n-3⋮48\)
Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh.
* Với n = 1, ta có: 2 - 1 2 = 9 - 8
* Với n = 2, ta có: 3 - 2 2 = 25 - 24
* Với n = 3, ta có: 4 - 3 2 = 49 - 48
* Với n = 4, ta có: 5 - 4 2 = 81 - 80
@Akai Haruma