Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
Ta có:
\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10k+3\)
\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)
Ta lại có:
\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}=5a+2\)
\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
1/ Ta có:
\(a^5-a^3+a=2\)
Dễ thấy a = 0 không phải là nghiệm từ đó ta có:
\(a^6-a^4+a^2=2a\)
\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)
\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)
Dấu = không xảy ra
Vậy \(a^6< 4\)
Câu 2/
Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath
1, n có dạng 2k+1(n\(\in N\)) Ta có:
\(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8\)
\(=4\left(k^2+3k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2
mà 4(k+1)(k+2)chia hết cho 4
\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n là số lẻ.
2, ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)