Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
\(n=2k\)
\(\Rightarrow A=n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)
\(=2k\left(2k-2\right)\left(2k+2\right)\)
\(=8k\left(k-1\right)\left(k+1\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6
\(\Rightarrow A⋮48\)
đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
xem lại đề bạn nhé vì với m = 5; n = 3 thì bài toán không đúng.
\(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp
Mà 3 số chẵn liên tiếp luôn \(⋮48\)
\(\Rightarrowđpcm\)
\(n^3+3n^2-n-3\)
\(=n^2\times\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\times\left(n^2-1\right)\)
\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)
Vì n là số lẻ nên \(n⋮̸2\)
\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)
\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)
\(\Rightarrow n^3+3n^2-n-3⋮48\)