Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+1+\dfrac{4}{x+2y}=3\\\dfrac{x+y-2+2}{x+y-2}-\dfrac{8}{x+2y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+\dfrac{4}{x+2y}=2\\\dfrac{2}{x+y-2}-\dfrac{8}{x+2y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}=1\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)⇔\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)
đoạn sau bạn tự giải nha
\(\left\{{}\begin{matrix}\dfrac{2}{x+2}+\dfrac{1}{2y-3}=2\\\dfrac{6}{x+2}-\dfrac{2}{2y-3}=1\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x+2}\\b=\dfrac{1}{2y-3}\end{matrix}\right.\)
\(\left(I\right)\left\{{}\begin{matrix}2a+b=2\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=5\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{1}{2}\left(x\ne-2\right)\\\dfrac{1}{2y-3}=1\left(y\ne\dfrac{3}{2}\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy nghiệm hệ phương trình là \(\left(0;2\right)\)
\(a)\left\{{}\begin{matrix}2x-y=3\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+4y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\2x+4y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
Vậy nghiệm hệ phương trình là (1; -1)
\(b)\left\{{}\begin{matrix}\dfrac{3}{2}x-y=\dfrac{1}{2}\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=1\\3x-2y=1\end{matrix}\right.\Leftrightarrow0x-0y=0\left(VSN\right)\)
Vậy hệ phương trình vô số nghiệm
\(c)\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-15y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-3x+10y=-1\\2x-3x+15y=-12-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+15y=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-2x+30y=-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}40y=-33\\-2x+30y=-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=\dfrac{29}{8}\end{matrix}\right.\)
Vậy nghiệm hệ phương trình là \(\left(\dfrac{29}{8};-\dfrac{33}{40}\right)\)
\(\left\{{}\begin{matrix}\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\left(1\right)\\3x-2y+z=12\left(2\right)\end{matrix}\right.\)
* Xét phương trình (1) :
\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)= \(\dfrac{3x-3}{15}=\dfrac{2y-4}{6}=\dfrac{z-2}{2}\)
= \(\dfrac{\left(3x-3\right)-\left(2y-4\right)+\left(z-2\right)}{15-6+2}\)( Áp dụng dãy tỉ số bằng nhau )
\(\Rightarrow\)\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)= \(\dfrac{\left(3x-2y+z\right)-1}{11}\) = \(\dfrac{12-1}{11}\) ( vì 3x-2y+z=12)
\(\Rightarrow\) \(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)=1
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\y-2=3\\z-2=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=5\\z=4\end{matrix}\right.\)
Mn giúp e với ak e đag cần gấp ak
\(\left\{{}\begin{matrix}\dfrac{3}{x+1}-2x=-1\left(ĐK:x\ne-1\right)\\\dfrac{5}{x+1}+3y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\dfrac{9}{x+1}+\dfrac{10}{x+1}=19\\\dfrac{3}{x+1}-2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{5}{4}\end{matrix}\right.\)