K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Mn giúp e với ak e đag cần gấp ak

19 tháng 9 2021

\(\left\{{}\begin{matrix}\dfrac{3}{x+1}-2x=-1\left(ĐK:x\ne-1\right)\\\dfrac{5}{x+1}+3y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\dfrac{9}{x+1}+\dfrac{10}{x+1}=19\\\dfrac{3}{x+1}-2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{5}{4}\end{matrix}\right.\)

Đặt 1/căn x-3=a; 1/|2y-1|=b

Theo đề, ta có; 8a+11b=5 và 4a+b=3

=>a=7/9; b=-1/9

=>|2y-1|=-9(loại)

=>Hệ vô nghiệm

1: =>x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=1 hoặc x=-4

2: =>2x-3y=1 và 3x=4y+2

=>2x-3y=1 và 3x-4y=2

=>x=2 và y=1

20 tháng 5 2021

`đk:x ne 2,y ne 1/2`

ĐẶt `a=1/(x-2),b=1/(2y-1)`

`hpt<=>` $\begin{cases}a+5b=3\\3a-b=1\\\end{cases}$

`<=>` $\begin{cases}3a+15b=9\\3a-b=1\\\end{cases}$

`<=>` $\begin{cases}16b=8\\a=3-5b\\\end{cases}$

`<=>` $\begin{cases}b=\dfrac12\\a=\dfrac12\\\end{cases}$

`<=>` $\begin{cases}x-2=2\\2y-1=2\\\end{cases}$

`<=>` $\begin{cases}x=4\\y=\dfrac32\\\end{cases}$

20 tháng 5 2021

Đk: \(x\ne2;y\ne\dfrac{1}{2}\)

Đặt \(a=\dfrac{1}{x-2},b=\dfrac{1}{2y-1}\) (a,b khác 0)

Có hệ: \(\left\{{}\begin{matrix}a+5b=3\\3a-b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+5b=3\\15a-5b=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}16a=8\\3a-b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=3a-1=\dfrac{1}{2}\end{matrix}\right.\)(tm)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{1}{2}\\\dfrac{1}{2y-1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3}{2}\end{matrix}\right.\)(tm)

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

1: Khi m=3 thì hệ phương trình (1) trở thành:

\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)

2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)

hay m=-2/3

Nguyễn Khánh Ly bạn làm được bài này chưa vậy, bạn giúp mình được không...

banhqua

Giải hệ sau :

Câu a :

\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy ...........................

Câu b :

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy..................

12 tháng 1 2018

\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)