Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+1+\dfrac{4}{x+2y}=3\\\dfrac{x+y-2+2}{x+y-2}-\dfrac{8}{x+2y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+\dfrac{4}{x+2y}=2\\\dfrac{2}{x+y-2}-\dfrac{8}{x+2y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}=1\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)⇔\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)
đoạn sau bạn tự giải nha
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\left(1\right)\\3x-2y+z=12\left(2\right)\end{matrix}\right.\)
* Xét phương trình (1) :
\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)= \(\dfrac{3x-3}{15}=\dfrac{2y-4}{6}=\dfrac{z-2}{2}\)
= \(\dfrac{\left(3x-3\right)-\left(2y-4\right)+\left(z-2\right)}{15-6+2}\)( Áp dụng dãy tỉ số bằng nhau )
\(\Rightarrow\)\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)= \(\dfrac{\left(3x-2y+z\right)-1}{11}\) = \(\dfrac{12-1}{11}\) ( vì 3x-2y+z=12)
\(\Rightarrow\) \(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\)=1
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\y-2=3\\z-2=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=5\\z=4\end{matrix}\right.\)
Nguyễn Khánh Ly bạn làm được bài này chưa vậy, bạn giúp mình được không...
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
\(\left\{{}\begin{matrix}\dfrac{2}{x+2}+\dfrac{1}{2y-3}=2\\\dfrac{6}{x+2}-\dfrac{2}{2y-3}=1\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x+2}\\b=\dfrac{1}{2y-3}\end{matrix}\right.\)
\(\left(I\right)\left\{{}\begin{matrix}2a+b=2\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10a=5\\6a-2b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{1}{2}\left(x\ne-2\right)\\\dfrac{1}{2y-3}=1\left(y\ne\dfrac{3}{2}\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy nghiệm hệ phương trình là \(\left(0;2\right)\)
cảm ơn bạn nhiều