K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

Áp dụng định lý Pi-ta-go ta có:

\(NO^2+MO^2=MN^2\\ \Rightarrow MO^2=MN^2-NO^2\\ \Rightarrow MO=\sqrt{55^5-44^2}\\ \Rightarrow MO=33\left(cm\right)\)

13 tháng 2 2022

xét tam giác MNO vuông tại O

áp dụng định lí pytago ta có

\(MN^2=NO^2+OM^2\)

\(55^2=44^2+OM^2\)

\(OM=\sqrt{55^2-44^2}=33\left[CM\right]\)

 

Bài 4: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+28^2}=35\left(cm\right)\)

Bài 5: 

\(OM=\sqrt{55^2-44^2}=33\left(cm\right)\)

13 tháng 2 2022

Áp dụng định lý Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow21^2+28^2=BC^2\\ \Rightarrow BC=\sqrt{21^2+28^2}\\ \Rightarrow BC=35\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=35\left(cm\right)\)

a: DF=4cm

b: Xét ΔFEK có 

FD là đường cao

FD là đường trung tuyến

Do đó: ΔFEK cân tại F

c: Xét ΔFIG và ΔEID có 

\(\widehat{FIG}=\widehat{EID}\)

IF=IE

\(\widehat{IFG}=\widehat{IED}\)

Do đó: ΔFIG=ΔEID

Suy ra: GF=DE=3cm

d: Xét tứ giác DGFK có 

FG//DK

FG=DK

Do đó: DGFK là hình bình hành

Suy ra: DF và GK cắt nhau tại trung điểm của mỗi đường

mà Q là trung điểm của DF

nên Q là trung điểm của GK

hay G,Q,K thẳng hàng

27 tháng 1 2022

a, Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{FE^2-DE^2}=4cm\)

b, Xét tam giác EKF có : 

DF là đường cao 

Lại có : D là trung điểm EK 

=> FD đồng thời là đường trung tuyến 

Vậy tam giác EFK cân tại F 

c, thiếu đề 

28 tháng 1 2022

a. Ta có: \(AB^2+AC^2=6^2+8^2=100=BC^2\)

Áp dụng định lí Py-ta-go đảo ta có: tam giác ABC vuông tại A

b. Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có: \(\left\{{}\begin{matrix}BDchung\\\widehat{ABD}=\widehat{EBD}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\)=\(\Delta EBD\) \(\Rightarrow\)DA=DE(dpcm)

c. Xét \(\Delta FAD\) vuông tại A và \(\Delta CED\) vuông tại E có: \(\left\{{}\begin{matrix}DA=DE\\\widehat{ADF}=\widehat{EDC}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta FAD\)=\(\Delta CED\)\(\Rightarrow\)AF=EC

Mà BF=AB+BF, BC=BE+EC, AF=EC, AB=BE

\(\Rightarrow\)BF=BC\(\Rightarrow\)\(\Delta BFC\) cân tại B

d. Xét \(\Delta BFC\) cân tại B có: CA,FE là đường cao giao nhau tại D

\(\Rightarrow\)BD cũng là đường cao của \(\Delta BFC\)

mà \(\Delta BFC\) cân tại B nên BD vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\) BD là đường trung trực (dpcm)