K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

x=1+x

x=1+x

x=1+x=1-2

17 tháng 4 2017

1 + 1 = 2

2 + 2 =4

=> 2+4=6

1+1+2+2=2+4

=6

=> x=6

19 tháng 2 2018

a, Kẻ OH vuông góc với BC 

Ta có tam giác BEO=BHO( ch-gn )

=> BE=BH 

Tương tự ta có : CH=CF 

Mà BH+HC=BC => BE+CF=BC=5 ( Bạn tính BC theo định lý Pytago tam giác ABC nk )

Mà AB+AC=BE+FC+AE+AF=7 ( AE=AF vì AEOF là hình vuông )

=> AE=(7-5):2=1

=> AB+AC-BC=3+4-5=2=2AE ( đpcm )

19 tháng 2 2018

c, Ta có : OE=1, BE=2 : theo đl Pytago trong tam giác BEO tính đc \(BO=\sqrt{5}\)

OE=1, AE=1 :  theo đl Pytago trong tam giác OEA tính đc \(OA=\sqrt{2}\)

CF=3; OF=1 :  theo đl Pytago trong tam giác OFC tính đc \(OC=\sqrt{10}\)

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADI}=\widehat{EDC}\)

Do đó:ΔADI=ΔEDC

Suy ra: AI=EC

Ta có: BA+AI=BI

BE+EC=BC

mà BA=BE

và AI=EC

nên BI=BC

hayΔBIC cân tại B

d: Ta có: AD=DE

mà DE<DC

nên AD<DC

1 tháng 3 2022

Cảm ơn bạn nhìu nha