\(OE\perp A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

a, Kẻ OH vuông góc với BC 

Ta có tam giác BEO=BHO( ch-gn )

=> BE=BH 

Tương tự ta có : CH=CF 

Mà BH+HC=BC => BE+CF=BC=5 ( Bạn tính BC theo định lý Pytago tam giác ABC nk )

Mà AB+AC=BE+FC+AE+AF=7 ( AE=AF vì AEOF là hình vuông )

=> AE=(7-5):2=1

=> AB+AC-BC=3+4-5=2=2AE ( đpcm )

19 tháng 2 2018

c, Ta có : OE=1, BE=2 : theo đl Pytago trong tam giác BEO tính đc \(BO=\sqrt{5}\)

OE=1, AE=1 :  theo đl Pytago trong tam giác OEA tính đc \(OA=\sqrt{2}\)

CF=3; OF=1 :  theo đl Pytago trong tam giác OFC tính đc \(OC=\sqrt{10}\)

3 tháng 4 2017

x=1+x

x=1+x

x=1+x=1-2

17 tháng 4 2017

1 + 1 = 2

2 + 2 =4

=> 2+4=6

1+1+2+2=2+4

=6

=> x=6

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0