Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Bài 4: \(8^{10}\cdot125^{10}< =2^n\cdot5^n< =20^{16}\cdot5^{16}\)
=>\(1000^{10}< =10^n< =100^{16}\)
=>\(10^{30}< =10^n< =10^{32}\)
=>30<=n<=32
mà n là số tự nhiên
nên \(n\in\left\{30;31;32\right\}\)
Bài 1:
1: \(3^{-2}\cdot3^4\cdot3^n=3^7\)
=>\(3^n\cdot3^2=3^7\)
=>n+2=7
=>n=7-2=5
2: \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
=>\(2^n\left(\dfrac{1}{2}+4\right)=2^5\cdot9\)
=>\(2^n=9\cdot2^5:\dfrac{9}{2}=2^6\)
=>n=6
Bài 2:
1: \(243>=3^n>=9\)
=>\(3^2< =3^n< =3^5\)
=>2<=n<=5
mà n là số tự nhiên
nên \(n\in\left\{2;3;4;5\right\}\)
2: \(2^{n+3}\cdot2^n=144\)
=>\(2^{2n+3}=144\)
=>\(2n+3=log_2144\)
=>\(2n=log_2144-3\)
=>\(n=\dfrac{log_2144-3}{2}\left(loại\right)\)
Bài 3:
\(10^x:5^y=20^y\)
=>\(10^x=20^y\cdot5^y=100^y=10^{2y}\)
=>x=2y
vậy: \(\left(x;y\right)\in\){(2k;k)|\(k\in N\)}