Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b+c\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)\(=a^3+3a^2b+3ab^2+b^3+c^3=0\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)\(=a^3+b^3+c^3=-3ab.-c\)
\(=a^3+b^3+c^3=3abc\Rightarrowđpcm\)
Ta cm \(a^3+b^3+c^3=3abc\) là đúng khi \(a+b+c=0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(\Leftrightarrow\) \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)(điều này đúng vì a+b+c=0)
\(\Rightarrow\) \(a^3+b^3+c^3=3abc\)
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
\(VT=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}.\left(a+b+c\right)\)
\(VT=\frac{a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2}{2}.\left(a+b+c\right)\)
\(VT=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ca}{2}.\left(a+b+c\right)\)
\(VT=\frac{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}{2}.\left(a+b+c\right)\)
\(VT=\left(a^2+b^2+c^2-ab-bc-ca\right).\left(a+b+c\right)\)
\(VT=a^3+b^3+c^3-3abc=VP\left(đpcm\right)\)
<=> a3 + b3 + c3 - 3abc \(\ge\) 0
<=> (a + b)3 - 3ab.(a + b) + c3 - 3abc \(\ge\) 0
<=> [(a + b)3 + c3] - [3abc + 3ab.(a + b)] \(\ge\) 0
<=> (a + b + c)3 - 3(a+ b).c.(a + b +c) - 3ab.(a + b + c) \(\ge\) 0
<=> (a + b + c). [(a + b + c)2 - 3c(a + b) - 3ab] \(\ge\) 0
<=> (a + b + c).(a2 + b2 + c2 + 2ab + 2ac + 2bc - 3ac - 3bc - 3ab) \(\ge\) 0
<=> (a + b + c).(a2 + b2 + c2 - ac - bc - ab) \(\ge\) 0 (*)
ta có: 2.(a2 + b2 + c2 - ac - bc - ab) = 2a2 + 2b2 + 2c2 - 2ac - 2bc - 2ab = (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2)
= (a - b)2 + (a - c)2 + (b - c)2 \(\ge\) 0
=> (a2 + b2 + c2 - ac - bc - ab) \(\ge\) 0
Mà a + b + c > 0 do a; b; c > 0
=> (*) đúng => đpcm
Ta phân tích hiệu vt - vp thành nhân tử: tham khảo: Câu hỏi của Dương Chí Thắng chỗ chứng minh HĐT đó=)
\(VT-VP=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)
Vậy ta có đpcm.
Phân tích vế trái thành nhân tử thôi, bài này có từ HK 1 rồi đấy! Moi ra chi đây? =.=''
keo kiệt! ko giúp thì thôi, còn nói 1 câu rất ư là zô zuyên nữa!!
Bài 209 : đăng tách ra cho mn cùng làm nhé
a,sửa đề : \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)
c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)
Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Ta có (a + b + c)2 = 3(ab + bc + ca)
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a2 + b2 + c2 - ab - bc - ca = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\) (đpcm)
Trả lời:
Ta có: a + b + c = 0
<=> a + b = - c
=> ( a + b )3 = ( - c )3
<=> a3 + 3a2b + 3ab2 + b3 = - c3
<=> a3 + 3a2b + 3ab2 + b3 + c3 = 0
<=> a3 + 3ab ( a + b ) + b3 + c3 = 0
<=> a3 + 3ab ( - c ) + b3 + c3 = 0 (vì a + b = - c)
<=> a3 - 3abc + b3 + c3 = 0
<=> a3 + b3 + c3 = 3abc (đpcm)