Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Gọi d là ƯC(3n-1 ; 2n - 1)
\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\2n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-1\right)⋮d\\3\left(2n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}}\)
=> ( 6n - 3 ) - ( 6n - 2 ) chia hết cho d
=> 6n - 3 - 6n + 2 chia hết cho d
=> ( 6n - 6n ) + ( 2 - 3 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> 3n - 1 tối giản ( đpcm )
" => ƯCLN(3n - 1 ; 2n - 1) = 1
=> \(\frac{3n-1}{2n-1}\)tối giản "
a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11
Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3
=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8
b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6
Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1
=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7
c) 2n2 + 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13
Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2
=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11
Mình chỉ có thể giải câu d theo kiểu lớp 8
a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11
Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3
=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8
b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6
Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1
=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7
c) 2n2 + 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13
Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2
=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11