K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

a) n+3 chia hết cho n-2

=>n-2+5 chia hết cho n-2

=> 5 chia hết cho n-2

U(5)=1;5

=>n=3;7 

3 tháng 7 2016

Ta có: n + 3 chia hết cho n - 2

<=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-1;1;-5;5}

=> n = {1;3;-3;7}

10 tháng 1 2021

1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7

+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}

NM
10 tháng 1 2021

 a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)

 b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)

 c, ta có với n=0 thì thỏa mãn 

với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\) 

  
15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11

Bạn này làm sai r

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

NV
5 tháng 1 2021

\(4n+3⋮2n+1\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

5 tháng 1 2021

Ta có: 4n+3 chia hết cho 2n+1 (1)

Mà: 2(2n+1) chia hết cho 2n+1

=> 4n+2 chia hết cho 2n+1(2)

Từ (1) và (2) => (4n+3)-(4n+2) chia hết cho 2n+1

=> 1 chia hết cho 2n+1

=> 2n+1 thuộc Ư(1)={1;-1}

2n+1= 1 hoặc 2n+1=-1

=> 2n=0

=> n=0

chuc ban hc tot:))))

 

12 tháng 7 2019

a, 4n - 7 ⋮ n - 1

=> 4n - 4 - 3 ⋮ n - 1

=> 4(n - 1) - 3 ⋮ n - 1

=> -3 ⋮ n - 1

=> n - 1 thuộc Ư(-3)

=> n - 1 thuộc {-1; 1; -3; 3}

=> n thuộc {0; 2; -2; 4}

2 tháng 3 2022

ai kb ko kết đi chờ chi

1 tháng 11

2024 r

Nên mình ko giải