K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

2. Gọi d là ƯC(3n-1 ; 2n - 1)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\2n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-1\right)⋮d\\3\left(2n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}}\)

=> ( 6n - 3 ) - ( 6n - 2 ) chia hết cho d

=> 6n - 3 - 6n + 2 chia hết cho d

=> ( 6n - 6n ) + ( 2 - 3 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d 

=> 3n - 1 tối giản ( đpcm )

" => ƯCLN(3n - 1 ; 2n - 1) = 1 

=> \(\frac{3n-1}{2n-1}\)tối giản " 

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

21 tháng 2 2017

Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có

3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d

=> d = -1 hoặc 1, do đó n - 5 và 3n - 14  là nguyên tố cùng nhau

vậy n - 5/3n - 14 là phân số tối giản

21 tháng 2 2017

123456789q

4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

28 tháng 5 2021

Gọi d là ước chung lớn nhất của 3n+1 và 4n+1 (d thuộc N*)

Ta có : 3n+1 chia hết cho d

            4n +1 chia hết cho d

==> (4n+1) - (3n+1)  chia hết cho d

 Hay:          n             chia hết cho d

==>            3n          chia hết cho d

mà        3n+1           chia hết cho d (cmt)

==> (3n+1) - 3n       chia hết cho d

Hay:       1               chia hết cho d

mà           d thuộc N*

==> d = 1 

==> 3n+1 và 4n+1 nguyên tố cùng nhau

==> 3n+1/4n+1 là phân số tối giản. (đpcm)

28 tháng 5 2021

Gọi d là ƯCLN  ( 3n + 1; 4n + 1 )

\(\Rightarrow\)\(3n+1⋮\)\(\Rightarrow\)\(4.\left(3n+1\right)⋮\)d   \(\left(1\right)\)

\(\Rightarrow4n+1⋮\)\(\Rightarrow\)\(3.\left(4n+1\right)⋮\) d \(\Rightarrow\)\(12n+3⋮\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\text{[}\left(12n+4\right)-\left(12n+3\right)\text{]}⋮\)

\(\Rightarrow1⋮\)\(\Rightarrow\)d = 1

Vì ƯCLN  ( 3n + 1 ; 4n + 1 ) = 1 nên \(\frac{3n+1}{4n+1}\)là phân số tối giản

6 tháng 3 2018

giúp mình nha !

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.