Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d
\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)
Mà n4 + 3n2 + 1 \(⋮\)d
= n4 + 2n2 + n2 + 1
= ( n4 + 2n2 + 1 ) + n2
= ( n2 + 1 ) 2 + n2 \(⋮\)d
\(\Rightarrow\)n2 \(⋮\)d
\(\Leftrightarrow\)1 \(⋮\)d
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1
Bài giải
a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))
Gọi ƯCLN (n + 1; 3n + 4) là d (d \(\inℕ^∗\))
=> n + 1 \(⋮\)d; 3n + 4 \(⋮\)d
=> 3n + 4 - 3(n + 1) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (n + 1; 3n + 4) = 1
=> \(\frac{n+1}{3n+4}\)là phân số tối giản
=> ĐPCM
b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))
Gọi ƯCLN (2n + 3; 3n + 5) là d (d \(\inℕ^∗\))
=> 2n + 3 \(⋮\)d; 3n + 5 \(⋮\)d
=> 2(3n + 5) - 3(2n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (2n + 3; 3n + 5) = 1
=> \(\frac{2n+3}{3n+5}\)là phân số tối giản
=> ĐPCM
a) Gọi (n+1,3n+4) là d ( d thuộc N* )
=> n+1 và 3n+4 đều chia hết cho d
=> (3n+4)-3(n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau
=> P/s n+1/3n+4 tối giản với mọi n thuộc N (đpcm)
b) Gọi (2n+3,3n+5) là d (d thuộc N*)
=> 2n+3 chia hết cho d và 3n+5 chia hết cho d
=> (3n+5)-(2n+3) chia hết cho d
=> 2(3n+5)-3(2n+3) chia hết cho d
=> 6n+10-6n+9 chia hết cho d
=> d=1
=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau
=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N (đpcm)