Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Menelaus:
\(\dfrac{AK}{BK}\cdot\dfrac{BH}{CH}\cdot\dfrac{CI}{AI}=1\Leftrightarrow\dfrac{1}{2}\cdot\dfrac{BH}{HC}\cdot1=1\\ \Leftrightarrow\dfrac{BH}{HC}=2\Leftrightarrow\dfrac{HC}{HB}=\dfrac{1}{2}\)
1: Xét ΔABE có
K,I lần lượt là trung điểm của AB,AE
=>KI là đường trung bình của ΔABE
=>KI//BE và \(KI=\dfrac{BE}{2}\)
=>KI//BC
Xét ΔABC có
K,F lần lượt là trung điểm của AB,AC
=>KF là đường trung bình của ΔABC
=>KF//BC
2: Sửa đê: Chứng minh F,I,K thẳng hàng
Ta có: KI//BC
KF//BC
KI,KF có điểm chung là K
Do đó: K,I,F thẳng hàng
a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
d: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a: Xét ΔABQ có IK//BQ
nen IK/QB=AI/AQ
Xét ΔAQC có IH//QC
nên IH/QC=AI/AQ
=>IK/QB=IH/QC
b,c,d: Cái đề này phải bổ sung thêm là Q là trung điểm của BC á nha bạn
a,Xét tam giác ABQ có IK//BQ ( vì KH// BC)
=> `(IK)/(QB) = (AI)/(AQ)` (1)
Xét tam giác ACQ có IH//QC ( vì KH// BC)
=>`(IH)/(QC) = (AI)/(AQ)` (2)
Từ (1) và (2) => `(IK)/(QB) = (IH)/(QC)`
b,Xét tam giác EQC có IK//QC ( vì KH// BC)
=> `(IK)/(QC) = (IE)/(EQ)` (3)
CMTT => `(IH)/(BQ) = (IE)/(EQ)` (4)
Từ (3) và (4) => `(IH)/(BQ) = (IK)/(QC)`
c,Từ `(IK)/(QB) = (IH)/(QC)` và `(IH)/(BQ) = (IK)/(QC)`
=> `(IK)/(QB)` . `(IH)/(QB)` = `(IH)/(QC)` . `(IK)/(QC)`
=> `(IK . IH)/(QB . QB)` = `(IH . IK)/(QC .QC)`
=> `QB^2 = QC^2` => QB=QC
d, Từ QB=QC và `(IK)/(QB) = (IH)/(QC)` => IK=IH