Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=100\)
hay BC=10cm
Xét ΔABC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
hay \(AB^2=BH\cdot BC\)
c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)
Xét Δ ABI và Δ CBD có:
\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)
\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)
\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)
d) Xét ΔABH có:
BI là tia phân giác của \(\widehat{ABH}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)
Xét ΔABC có:
BD là tia phân giác của \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)
Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)
a) Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
=> BC = 10 (cm)
Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (t/c đường p/g)
=> \(\dfrac{AD}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AD}{3}=\dfrac{DC}{5}\)
Áp dụng DTSBN ta có:
\(\dfrac{AD}{3}=\dfrac{DC}{5}=\dfrac{AD+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{3}=1\Rightarrow AD=3\\\dfrac{DC}{5}=1\Rightarrow DC=5\end{matrix}\right.\)
b) ΔABH và ΔCBA (bạn tự xét nhé) theo trường hợp g-g
=> \(\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Xét ΔABI và ΔCBD ta có:
\(\widehat{ABI}=\widehat{DBC}\) (BD là đường p/g)
\(\widehat{BAI}=\widehat{BCD}\) (cmt)
=> ΔABI ~ ΔCBD (g-g)
c) Xét ΔABH ta có:
BI là đường p/g (gt)
=> \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (t/c đường p/g)
Ta có: \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (cm a)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (ΔABH ~ ΔCBA)
=> đpcm
a: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/2=6/5=1,2
=>AD=3,6cm; CD=2,4cm
Xét ΔABCcó ED//BC
nên ED/BC=AD/AC
=>ED/4=3,6/6=3/5
=>ED=2,4cm
b: Xét ΔADB và ΔAEC có
góc A chung
góc ABD=góc ACE
=>ΔABD đồng dạng với ΔACE
c: Xét ΔIEB và ΔIDC có
góc IEB=góc IDC
góc EIB=góc DIC
=>ΔIEB đồng dạng với ΔIDC
=>EB/DC=IE/ID
=>IE*DC=EB*ID