K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2022

\(a^3+8b^3+1=6ab\)

\(\Rightarrow\left(a+2b\right)^3-6a^2b-12ab^2+1-6ab=0\)

\(\Rightarrow\left(a+2b\right)^3+1-6ab\left(a+2b+1\right)=0\)

\(\Rightarrow\left(a+2b+1\right)\left[\left(a+2b\right)^2-\left(a+2b\right)+1\right]-6ab\left(a+2b+1\right)=0\)

\(\Rightarrow\left(a+2b+1\right)\left(a^2+4ab+4b^2-a-2b+1-6ab\right)=0\)

\(\Rightarrow\left(a+2b+1\right)\left(a^2-2ab+4b^2-a-2b+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\a^2-2ab+4b^2-a-2b+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a^2-2a\right)+\dfrac{1}{2}\left(a^2-4ab+4b^2\right)+2\left(b^2-b\right)+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a^2-2a+1-1\right)+\dfrac{1}{2}\left(a^2-4ab+4b^2\right)+2\left(b^2-b+\dfrac{1}{4}-\dfrac{1}{4}\right)+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a-1\right)^2-\dfrac{1}{2}+\dfrac{1}{2}\left(a-2b\right)^2+2\left(b-\dfrac{1}{2}\right)^2-\dfrac{1}{2}+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a-1\right)^2+\dfrac{1}{2}\left(a-2b\right)^2+2\left(b-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\a=1;b=\dfrac{1}{2}\end{matrix}\right.\)

*\(a+2b+1=0\Rightarrow a+2b=-1\)

*\(a=1;b=\dfrac{1}{2}\Rightarrow a+2b=1+2.\dfrac{1}{2}=2\)

 

1 tháng 7 2022

.

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

6 tháng 2 2019

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?

15 tháng 3 2018

vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:

a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)

cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1

21 tháng 12 2016

1/ \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x^2-y^2\right)-4y^2+10\)

\(=x^2-2xy+y^2+x^2+2xy+y^2-2x^2+2y^2-4y^2+10\)

\(=10\)

2/ \(5a^2+b^2=6ab\Leftrightarrow\left(5a^2-5ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(5a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a=b\end{cases}}\)

Với a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-a}{a+a}=0\)

Với 5a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=\frac{-4}{6}=\frac{-2}{3}\)

21 tháng 12 2016

1.(x-y)2+(x+y)2-2(x2-y2)-4y2+10

=x2-2xy+y2+x2+2xy+y2-2x2+2y2-4y2+10

=x2+x-2x2-2xy+2xy+y2+y2+2y2-4y2+10

=10

=>dpcm

2.Ta co : 5a2+b2=6ab

5a2+b2-6ab=0

5a2+b2-5ab-ab=0

5a2-5ab+b2-ab=0

5a(a-b)+b(b-a)=0

5a(a-b)-b(a-b)=0

(a-b)(5a-b)=0

Ta lai co : a-b=0 \(\Rightarrow\)a=b

Va : 5a-b=0 \(\Rightarrow\)5a=b

Thay : a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{b-b}{b+b}=\frac{0}{2b}=0\)

Thay : 5a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=-\frac{4a}{6a}=-\frac{4}{6}=-\frac{2}{3}\)

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3 

16 tháng 8 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\frac{1}{abc}=\frac{3}{abc}\)

Ta lại có :

\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{bca}{b^3}+\frac{cab}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

\(\)

16 tháng 8 2020

Bài làm:

Ta có: \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

CM HĐT phụ:

Ta có: \(a^3+b^3+c^3=\left(a^3+b^3+c^3-3abc\right)+3abc\)

\(=\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]+3abc\)

\(=\left[\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\right]+3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

Áp dụng vào trên ta được:

\(abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)

Mà  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(P=abc.\frac{3}{abc}=3\)

Vậy P = 3

19 tháng 7 2021

Ta có: a2 + b2 = (a + b)2 - 2ab = 62 - 2.4 = 28

a4 + b4 = (a2 + b2)2 - 2a2b2 = 282 - 2.42 = 752

19 tháng 7 2021

khó quá

anh j ơi

ko y được đâu!