Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-9^2=63\)
hay \(AC=3\sqrt{7}\left(cm\right)\)
Vậy: \(AC=3\sqrt{7}\left(cm\right)\)
b) Xét ΔCAE vuông tại A và ΔCHE vuông tại H có
CE chung
\(\widehat{ACE}=\widehat{HCE}\)(CE là tia phân giác của \(\widehat{ACH}\))
Do đó: ΔCAE=ΔCHE(Cạnh huyền-góc nhọn)
Suy ra: CA=CH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
c) Xét ΔAEK vuông tại A và ΔHEB vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEB}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEB(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=HB(Hai cạnh tương ứng)
Ta có: CA+AK=CK(A nằm giữa C và K)
CH+HB=CB(H nằm giữa C và B)
mà CA=CH(cmt)
và AK=HB(cmt)
nên CK=CB
Xét ΔCKB có CK=CB(cmt)
nên ΔCKB cân tại C(Định nghĩa tam giác cân)
Ta có: CA=CH(cmt)
nên C nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EA=EH(cmt)
nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra CE là đường trung trực của AH(Đpcm)
d) Ta có: EA=EH(cmt)
mà EH<EB(ΔEHB vuông tại H có EB là cạnh huyền)
nên EA<EB(Đpcm)
e) Ta có: ΔEAK=ΔEHB(cmt)
nên EK=EB(hai cạnh tương ứng)
Ta có: CK=CB(cmt)
nên C nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: EK=EB(cmt)
nên E nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: NK=NB(N là trung điểm của BK)
nên N nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra C,E,N thẳng hàng
mà C,G,N thẳng hàng(cmt)
nên C,G,E thẳng hàng(Đpcm)
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
a) ΔABD và ΔEBD có:
BA = BE (gt)
B1ˆ=B2ˆ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ BADˆ=BEDˆ(hai góc tương ứng)
mà BAD^ =90 độ
⇒BEDˆ= 90 độ
⇒ DE ⊥⊥ BE
b) ΔABI và ΔEBIcó:
BA = BE (gt)
B1ˆ=B2ˆ (gt)
BI là cạnh chung
⇒ΔABI=ΔEBI (c.g.c)
⇒ IA = IE (hai cạnh tương ứng) (1)
Ta có: I1ˆ+I2ˆ=1800 (hai góc kề bù)
mà I1ˆ=I2ˆ (ΔABI=ΔEBI)
⇒ I1ˆ=I2ˆ=90 độ (2)
Từ (1) và (2) ⇒⇒ DE vuông góc với BE.
c) ΔAHE vuông tại H có góc AEH nhọn
⇒góc AEC là góc tù
⇒⇒ AHEˆ<AECˆ
⇒⇒ AE < AC (quan hệ giữa cạnh và góc đối diện)
mà EH là hình chiếu của AE trên BC.
HC là hình chiếu của AC trên BC.
⇒⇒ EH < HC (quan hệ đường xiên và hình chiếu
a) Xét hai tam giác vuông ΔABE và ΔHBE có:
ˆABE=ˆHBE (do BE là tia phân giác giả thiết)
BE cạnh chung
⇒ΔABE=ΔHBE(cạnh huyền_góc nhọn)
b) AB=HB(2 cạnh tương ứng) suy ra B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng) suy ra E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) suy ra BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC
ˆAEK=ˆHEC (đối đỉnh)
AE=HE (chứng minh trên)
⇒ΔAEK=ΔHEC (cạnh góc vuông- góc nhọn)
⇒EK=EC (2 cạnh tương ứng) (3)
Ta có tam giác AEK vuông tại A
⇒ˆK<ˆA
⇒AE<KE (4)
Từ (3) và (4) ⇒AE<EC