K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ˆABE=ˆHBE (do BE là tia phân giác giả thiết)

BE cạnh chung

⇒ΔABE=ΔHBE(cạnh huyền_góc nhọn)

b) AB=HB(2 cạnh tương ứng) suy ra B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng) suy ra E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) suy ra  BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC

ˆAEK=ˆHEC (đối đỉnh)

AE=HE (chứng minh trên)

⇒ΔAEK=ΔHEC (cạnh góc vuông- góc nhọn)

⇒EK=EC (2 cạnh tương ứng) (3)

Ta có tam giác AEK vuông tại A

⇒ˆK<ˆA

⇒AE<KE (4)

Từ (3) và (4) ⇒AE<EC

14 tháng 8 2023

A B C H E K

a/

Xét tg vuông ABE và tg vuông HBE có

BE chung

\(\widehat{ABE}=\widehat{HBE}\) (gt)

=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

b/

tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B

\(\widehat{ABE}=\widehat{HBE}\)

=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)

c/

Xét tg vuông KBH và tg vuông ABC có

\(\widehat{B}\) chung

AB = HB (cmt)

=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC

Xét tg BKE và tg BCE có

BE chung

\(\widehat{ABE}=\widehat{HBE}\) (gt)

BK=BC (cmt)

=> tg BKE = tg BCE (c.g.c) => EK = EC

d/

Xét tg vuông AKE có

AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất

Mà EK=EC (cmt)

=> AE<EC

 

 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔABE=ΔHBE

b: ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

=>ΔEKC cân tại E

26 tháng 6 2021

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

3 tháng 8 2021

cảm ơn bn

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-9^2=63\)

hay \(AC=3\sqrt{7}\left(cm\right)\)

Vậy: \(AC=3\sqrt{7}\left(cm\right)\)

b) Xét ΔCAE vuông tại A và ΔCHE vuông tại H có 

CE chung

\(\widehat{ACE}=\widehat{HCE}\)(CE là tia phân giác của \(\widehat{ACH}\))

Do đó: ΔCAE=ΔCHE(Cạnh huyền-góc nhọn)

Suy ra: CA=CH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

c) Xét ΔAEK vuông tại A và ΔHEB vuông tại H có 

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEB}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEB(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=HB(Hai cạnh tương ứng)

Ta có: CA+AK=CK(A nằm giữa C và K)

CH+HB=CB(H nằm giữa C và B)

mà CA=CH(cmt)

và AK=HB(cmt)

nên CK=CB

Xét ΔCKB có CK=CB(cmt)

nên ΔCKB cân tại C(Định nghĩa tam giác cân)

Ta có: CA=CH(cmt)

nên C nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CE là đường trung trực của AH(Đpcm)

d) Ta có: EA=EH(cmt)

mà EH<EB(ΔEHB vuông tại H có EB là cạnh huyền)

nên EA<EB(Đpcm)

e) Ta có: ΔEAK=ΔEHB(cmt)

nên EK=EB(hai cạnh tương ứng)

Ta có: CK=CB(cmt)

nên C nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: EK=EB(cmt)

nên E nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: NK=NB(N là trung điểm của BK)

nên N nằm trên đường trung trực của KB(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra C,E,N thẳng hàng

mà C,G,N thẳng hàng(cmt)

nên C,G,E thẳng hàng(Đpcm)

9 tháng 4 2023

giúp em với ạ:(

a: Kẻ AN là đường kính của (O)

góc ABN=1/2*180=90 độ

=>BN//CH

góc ACN=1/2*180=90 độ

=>CH//BN

=>BHCN là hình bình hành

=>M là trung điểm của HN

Xét ΔAHN có NM/NH=NO/NA

nên OM//AH và OM=AH/2

=>AH=2OM

c: ΔOKL cân tại O

mà OI là đường cao

nên I là trung điểm của KL

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

30 tháng 12 2018

a) ΔABD và ΔEBD có:
BA = BE (gt)
B1ˆ=B2ˆ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ BADˆ=BEDˆ(hai góc tương ứng)
mà BAD^ =90 độ
BEDˆ= 90 độ
 DE ⊥⊥ BE

b) ΔABI và ΔEBIcó:
BA = BE (gt)
B1ˆ=B2ˆ (gt)
BI là cạnh chung
⇒ΔABI=ΔEBI (c.g.c)
 IA = IE (hai cạnh tương ứng) (1)
Ta có: I1ˆ+I2ˆ=1800 (hai góc kề bù)
mà I1ˆ=I2ˆ (ΔABI=ΔEBI)
 I1ˆ=I2ˆ=90 độ  (2)
Từ (1) và (2) ⇒⇒ DE vuông góc với BE.

c) ΔAHE vuông tại H có góc AEH nhọn
⇒góc  AEC là góc tù
⇒⇒ AHEˆ<AECˆ
⇒⇒ AE < AC (quan hệ giữa cạnh và góc đối diện)
mà EH là hình chiếu của AE trên BC.
HC là hình chiếu của AC trên BC.
⇒⇒ EH < HC (quan hệ đường xiên và hình chiếu

1 tháng 6 2020

sao câu c loằng ngoằng thế

14 tháng 7 2021

undefinedundefined

14 tháng 7 2021

undefinedundefined