Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )
rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)
lại có gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng
bạn tham khảo link mà mk đưa cho nhé
hoiap247.com/cau-hoi/82020
nhớ k cho mk nhé
Hình bạn tự vẽ nha :)
Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A
=> \(\widehat{ABE}\) = \(\widehat{AEB}\)
\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)
Xét \(\Delta ADC\) có AD = AC => \(\Delta ADC\) cân tại A
=> \(\Delta ADC\) = \(\Delta ACD\)
\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)
Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)
=> BE // CD
\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE
\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD
Do đó 3 điểm M , A , N thẳng hàng
a: Xét ΔADE và ΔABC có
AD=AB
\(\widehat{DAE}=\widehat{BAC}\)
AE=AC
Do đó: ΔADE=ΔABC
=>DE=BC
b: Xét tứ giác BCDE có
A là trung điểm chung của BD và CE
=>BCDE là hình bình hành
=>BE//CD và BE=CD(1)
c:
N là trung điểm của BE
=>\(EN=NB=\dfrac{EB}{2}\left(2\right)\)
M là trung điểm của CD
=>\(MD=MC=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EN=NB=MD=MC
Xét tứ giác ENCM có
EN//CM
EN=CM
Do đó: ENCM là hình bình hành
=>EC cắt NM tại trung điểm của mỗi đường
mà A là trung điểm của EC
nên A là trung điểm của NM
=>N,A,M thẳng hàng