Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\) và \(\overrightarrow{a}+\overrightarrow{b}\) là \(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).
a) Ta thấy \(4 = ( - 2).( - 2); - 6 = ( - 2).3 \Rightarrow \overrightarrow a = - 2\overrightarrow b \)
\( - 2 < 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng (đpcm)
b) Ta thấy \( - 8 = 4.( - 2);12 = 4.3 \Rightarrow \overrightarrow b = 4\overrightarrow a \)
\(4 > 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng (đpcm)
c) Ta thấy \(0 = - 1.0;4 = ( - 1).( - 4) \Rightarrow \overrightarrow a = - \overrightarrow b \)
Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đối nhau (đpcm)
Lời giải:
Xét hai vecto bất kỳ \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$
Ta có:
\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)
\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)
Mà theo bđt tam giác thì:
\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)
Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$
$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng
$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng
Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.
------------------
Áp dụng vào bài toán:
\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)
Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng
\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng
\(\)vectơ \(\overrightarrow c = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b \) có độ dài gấp \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}\) lần vectơ \(\overrightarrow b \) và cùng hướng với vectơ \(\overrightarrow b \)
+) Nếu hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)cùng hướng và ngược lại
+) \(\left| {\overrightarrow c } \right| = \left| {\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b } \right| = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\left| {\overrightarrow b } \right| = \left| {\overrightarrow a } \right|\). Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)có cùng độ dài
a) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2} \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)
\( \Leftrightarrow {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)
\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)
\( \Leftrightarrow 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)
\( \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 0^\circ \)
Vậy \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow \overrightarrow a , \,\overrightarrow b \) cùng hướng.
b) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a - \overrightarrow b } \right|^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a + \overrightarrow b } \right)^2} = {\left( {\overrightarrow a - \overrightarrow b } \right)^2}\)
\( \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} - 2\overrightarrow a .\overrightarrow b + {\left( {\overrightarrow b } \right)^2}\)
\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b = - 2\overrightarrow a .\overrightarrow b \Leftrightarrow 4\overrightarrow a .\overrightarrow b = 0\)
\( \Leftrightarrow \overrightarrow a .\overrightarrow b = 0 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)
Vậy \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow a - \overrightarrow b } \right| \Leftrightarrow \overrightarrow a ,\overrightarrow b \) vuông góc với nhau.
\(\overrightarrow{a}\perp\overrightarrow{b}\Rightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\left(2\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=2a^2+2\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{a}.\overrightarrow{b}-b^2\)
\(=2a^2-b^2+\overrightarrow{a}.\overrightarrow{b}\)
\(=2.1-2+0=0\)
\(\Rightarrow\left(2\overrightarrow{a}-\overrightarrow{b}\right)\perp\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
a) Ta có hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \) vuông góc nên \(\overrightarrow i .\overrightarrow j = 0\)
+) \({\left( {\overrightarrow i + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} + 2\overrightarrow i .\overrightarrow j = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)
+) \({\left( {\overrightarrow i + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} - 2\overrightarrow i .\overrightarrow j = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)
+) \(\left( {\overrightarrow i + \overrightarrow j } \right)\left( {\overrightarrow i - \overrightarrow j } \right) = {\left( {\overrightarrow i } \right)^2} - {\left( {\overrightarrow j } \right)^2} = {\left| {\overrightarrow i } \right|^2} - {\left| {\overrightarrow j } \right|^2} = 1 - 1 = 0\)
b) Sử dụng kết quả của câu a) ta có:
\(\overrightarrow a .\overrightarrow b = \left( {2\overrightarrow i + 2\overrightarrow j } \right).\left( {3\overrightarrow i - 3\overrightarrow j } \right) = 2.3.\left( {\overrightarrow i + \overrightarrow j } \right).\left( {\overrightarrow i - \overrightarrow j } \right) = 6.0 = 0\)
\(\overrightarrow a .\overrightarrow b = 0 \Rightarrow \overrightarrow a \bot \overrightarrow b \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)
A. Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 26 \ne 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \) không vuông góc với nhau.
B. Ta có: \(\overrightarrow a .\overrightarrow b = 1.( - 1) + ( - 1).1 = - 2 \ne 0\) nên \(\overrightarrow a \) và \(\overrightarrow b \) không vuông góc với nhau.
C. Ta có: \(\overrightarrow z .\overrightarrow t = a.( - b) + b.a = 0\) nên \(\overrightarrow z \) và \(\overrightarrow t \) vuông góc với nhau.
Chọn đáp án C
D. Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 \ne 0\) nên \(\overrightarrow n \) và \(\overrightarrow k \) không vuông góc với nhau.
a) \(\overrightarrow{a}+\overrightarrow{b}=\left(2;-2\right)+\left(1;4\right)=\left(3;2\right)\).
\(\overrightarrow{a}-\overrightarrow{b}=\left(2;-2\right)-\left(1;4\right)=\left(1;-6\right)\).
\(2\overrightarrow{a}+3\overrightarrow{b}=2\left(2;-2\right)+3\left(1;4\right)=\left(4;-4\right)+\left(3;12\right)\)\(=\left(7;8\right)\).
c) Gọi x và y là hai số thực để:
\(\overrightarrow{c}=x\overrightarrow{a}+y\overrightarrow{b}=x\left(2;-2\right)+y\left(1;4\right)=\left(2x+y;-2x+4y\right)\)
Từ đó suy ra: \(\left\{{}\begin{matrix}2x+y=5\\-2x+4y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\).
Vậy \(\overrightarrow{c}=2\overrightarrow{a}+1\overrightarrow{b}\).
Giả sử \(\overrightarrow{a}\) và \(\overrightarrow{b}\) có giá vuông góc nhau
Ta có hai \(\overrightarrow{a},\overrightarrow{b}\) tạo thành hình chữ nhật có độ dài hai cạnh là a,b
Có: \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{c}\) hay \(\overrightarrow{c}\) có phương chiều và độ dài trùng với đường chéo thứ nhất của hình chữ nhật tạo bởi 2 vector trên.
Tương tự lại có: \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{d}\) hay \(\overrightarrow{d}\) có phương chiều và độ dài trùng với đường chéo thứ hai của hình chữ nhật tạo bởi 2 vector trên.
Ta có: \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|\) và \(\left|\overrightarrow{a}-\overrightarrow{b}\right|=\left|\overrightarrow{d}\right|\)
Mà độ dài hai đường chéo hình chữ nhật luôn bằng nhau hay \(\left|\overrightarrow{c}\right|=\left|\overrightarrow{d}\right|\)
\(\Rightarrow\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Hay khi \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\) thì vector \(\overrightarrow{a},\overrightarrow{b}\)có giá vuông góc với nhau
Trên mặt phẳng lấy các điểm A, B, C sao cho \(\overrightarrow{AB}=\overrightarrow{a};\overrightarrow{AC}=\overrightarrow{b}\). Gọi M là trung điểm BC. Khi đó:
\(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) (quy tắc trung tuyến)
và \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\) (quy tắc 3 điểm)
Do đó \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Leftrightarrow\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|\) \(\Leftrightarrow2AM=CB\) hay \(AM=\dfrac{BC}{2}\)
Tam giác ABC có trung tuyến \(AM=\dfrac{BC}{2}\) nên tam giác này vuông tại A. Nói cách khác, nếu 2 vector \(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa mãn điều kiện đề bài thì giá của chúng vuông góc với nhau.