K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

a) \(\overrightarrow{a}+\overrightarrow{b}=\left(2;-2\right)+\left(1;4\right)=\left(3;2\right)\).
\(\overrightarrow{a}-\overrightarrow{b}=\left(2;-2\right)-\left(1;4\right)=\left(1;-6\right)\).
\(2\overrightarrow{a}+3\overrightarrow{b}=2\left(2;-2\right)+3\left(1;4\right)=\left(4;-4\right)+\left(3;12\right)\)\(=\left(7;8\right)\).
c) Gọi x và y là hai số thực để:
\(\overrightarrow{c}=x\overrightarrow{a}+y\overrightarrow{b}=x\left(2;-2\right)+y\left(1;4\right)=\left(2x+y;-2x+4y\right)\)
Từ đó suy ra: \(\left\{{}\begin{matrix}2x+y=5\\-2x+4y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\).
Vậy \(\overrightarrow{c}=2\overrightarrow{a}+1\overrightarrow{b}\).

31 tháng 3 2017

Giả sử ta phân tích được theo tức là có hai số m, n để

= m. + n. cho ta = (2m+n; -2m+4n)

=(0;5) nên ta có hệ:
Giải hệ ta được m = 2, n = 1

Vậy = 2 +



17 tháng 5 2017

a) \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}=3\left(2;1\right)+2\left(3;-4\right)-4\left(-7;2\right)\)
\(=\left(6;3\right)+\left(6;-8\right)-\left(-28;8\right)\)
\(=\left(6+6+28;3-8-8\right)=\left(40;-13\right)\).
b) \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Leftrightarrow\overrightarrow{x}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)
\(\Leftrightarrow\overrightarrow{x}=\left(3;-4\right)-\left(-7;2\right)-\left(2;1\right)\)
\(\Leftrightarrow\overrightarrow{x}=\left(3+7-2;-4-2-1\right)\)
\(\Leftrightarrow\overrightarrow{x}=\left(8;-7\right)\).
c) Có \(\overrightarrow{c}\left(-7;2\right)=k\overrightarrow{a}+h\overrightarrow{b}=k\left(2;1\right)+h\left(3;-4\right)\)
\(=\left(2k+3h;k-4h\right)\).
Từ đó suy ra: \(\left\{{}\begin{matrix}2k+3h=-7\\k-4h=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k=-2\\h=-1\end{matrix}\right.\).

30 tháng 3 2017

Giải bài 11 trang 28 sgk Hình học 10 | Để học tốt Toán 10

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Tọa độ vectơ \(\overrightarrow u  = \left( {2.\left( { - 1} \right) + 3 - 3.2;2.2 + 1 - 3.\left( { - 3} \right)} \right) = \left( { - 5;14} \right)\)

b) Do \(\overrightarrow x  + 2\overrightarrow b  = \overrightarrow a  + \overrightarrow c  \Leftrightarrow \overrightarrow x  = \overrightarrow a  + \overrightarrow c  - 2\overrightarrow b  = \left( { - 1 + 2 - 2.3;2 + \left( { - 3} \right) - 2.1} \right) = \left( { - 5; - 3} \right)\)

Vậy \(\overrightarrow x  = \left( { - 5; - 3} \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\)vectơ \(\overrightarrow c  = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b \) có độ dài gấp \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}\) lần vectơ \(\overrightarrow b \) và cùng hướng với vectơ \(\overrightarrow b \)

+) Nếu hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)cùng hướng và ngược lại

+) \(\left| {\overrightarrow c } \right| = \left| {\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b } \right| = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\left| {\overrightarrow b } \right| = \left| {\overrightarrow a } \right|\). Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)có cùng độ dài

17 tháng 5 2017

a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\)\(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow {AB}  = \overrightarrow a ,\;\overrightarrow {BC}  = \overrightarrow b \) nên \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Mặt khác: \(\overrightarrow {AD}  = \overrightarrow b ,\;\overrightarrow {DC}  = \overrightarrow a \) nên \(\overrightarrow b  + \overrightarrow a  = \overrightarrow {AD}  + \overrightarrow {DC}  = \overrightarrow {AC} \)

Do đó \(\overrightarrow a  + \overrightarrow b  = \overrightarrow b  + \overrightarrow a \).

b) Theo câu a) ta có \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AC} \) và \(\overrightarrow {CD}  = \overrightarrow c \) nên \(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \overrightarrow {AC}  + \overrightarrow {CD}  = \overrightarrow {AD} \).

Mặt khác: \(\overrightarrow {BC}  = \overrightarrow b ,\;\overrightarrow {CD}  = \overrightarrow c \) nên \(\overrightarrow b  + \overrightarrow c  = \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {BD} \)

Và \(\overrightarrow a  = \overrightarrow {AB} \) nên \(\overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

Vậy \(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2} \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b  + {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 0^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow \overrightarrow a , \,\overrightarrow b \) cùng hướng.

b) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a  - \overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} - 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  =  - 2\overrightarrow a .\overrightarrow b  \Leftrightarrow 4\overrightarrow a .\overrightarrow b  = 0\)

\( \Leftrightarrow \overrightarrow a .\overrightarrow b  = 0 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow \overrightarrow a ,\overrightarrow b \) vuông góc với nhau.

16 tháng 5 2017

\(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}=\left(1+0;-2+3\right)=\left(1;1\right)\).
\(\overrightarrow{y}=\overrightarrow{a}-\overrightarrow{b}=\left(0-1;3-\left(-2\right)\right)=\left(-1;5\right)\).
\(\overrightarrow{z}=3\overrightarrow{a}-4\overrightarrow{b}=3\left(1;-2\right)-4\left(0;3\right)=\left(3;-6\right)-\left(0;12\right)\)\(=\left(3;-18\right)\).