K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2} \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b  + {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 0^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow \overrightarrow a , \,\overrightarrow b \) cùng hướng.

b) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a  - \overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} - 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  =  - 2\overrightarrow a .\overrightarrow b  \Leftrightarrow 4\overrightarrow a .\overrightarrow b  = 0\)

\( \Leftrightarrow \overrightarrow a .\overrightarrow b  = 0 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow \overrightarrow a ,\overrightarrow b \) vuông góc với nhau.

N
23 tháng 7 2017

a) đẳng thức xảy ra khi véc tơ a và véc tơ b cùng hướng.

b) đẳng thức xảy ra khi hai véc tơ a và b vuông góc với nhau

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\)vectơ \(\overrightarrow c  = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b \) có độ dài gấp \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}\) lần vectơ \(\overrightarrow b \) và cùng hướng với vectơ \(\overrightarrow b \)

+) Nếu hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)cùng hướng và ngược lại

+) \(\left| {\overrightarrow c } \right| = \left| {\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b } \right| = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\left| {\overrightarrow b } \right| = \left| {\overrightarrow a } \right|\). Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)có cùng độ dài

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:
Xét hai vecto bất kỳ  \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$

Ta có:

\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)

\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)

Mà theo bđt tam giác thì:

\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)

Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$

$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng 

$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng

Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.

------------------

Áp dụng vào bài toán:

\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)

Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

a: Đặt \(\overrightarrow{a}=\overrightarrow{AB};\overrightarrow{BC}=\overrightarrow{b}\)

\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{AB}\right|+\left|\overrightarrow{BC}\right|\)=AB+BC

|vecto a+vecto b|=|vecto AB+vecto BC|=AC

AB+BC=AC

=>A,B,C thẳng hàng

=>vecto AB và vecto BC cùng hướng

c: |vecto a+vecto b|=|vecto a-vecto b|

=>vecto a+vecto b=vecto a-vecto b hoặc vecto a+vecto b=vecto b-vecto a

=>vecto b=vecto0 hoặc vecto a=vecto 0

 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta thấy \(4 = ( - 2).( - 2); - 6 = ( - 2).3 \Rightarrow \overrightarrow a  =  - 2\overrightarrow b \)

\( - 2 < 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng (đpcm)

b) Ta thấy \( - 8 = 4.( - 2);12 = 4.3 \Rightarrow \overrightarrow b  = 4\overrightarrow a \)

\(4 > 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng  (đpcm)

c) Ta thấy \(0 =  - 1.0;4 = ( - 1).( - 4) \Rightarrow \overrightarrow a  =  - \overrightarrow b \)

Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đối nhau (đpcm)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Tọa độ của vectơ \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w \) là: \(\overrightarrow u  + \overrightarrow v  + \overrightarrow w  = \left( { - 2 + 0 + \left( { - 2} \right);0 + 6 + 3} \right) = \left( { - 4;9} \right)\)

b) Ta có: \(\overrightarrow w  + \overrightarrow u  = \overrightarrow v  \Leftrightarrow \overrightarrow w  = \overrightarrow v  - \overrightarrow u \) nên \(\overrightarrow w  = \left( {0 - \sqrt 3 ; - \sqrt 7  - 0} \right) = \left( { - \sqrt 3 ; - \sqrt 7 } \right)\)

19 tháng 5 2017

\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\)\(\overrightarrow{a}+\overrightarrow{b}\)\(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).