K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

8 tháng 7 2019

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)

16 tháng 7 2019

a, Ta có:  \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\) 

\(\Rightarrow\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)

b, \(A=\frac{2003.2004-1}{2003.2004}=1-\frac{1}{2003.2004}\)

\(B=\frac{2004.2005-1}{2004.2005}=1-\frac{1}{2004.2005}\)

Ta có: \(2003.2004< 2004.2005\)

\(\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)

\(\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)

\(\Rightarrow A< B\)

9 tháng 7 2023

C = \(\dfrac{2018^{2011}+1}{2018^{2019}+1}\)

20182011 < 20182019 ⇒ 20182011 + 1 < 20182019 + 1

⇒ C < 1

D = \(\dfrac{2018^{2017}}{2018^{2013}+1}\) 

Tử số D = 20182017 = 20182016.( 2017 + 1)

              = 20182016.2017 + 20182016 > 20182013 + 1

D > 1

Vì C < 1 < D 

Vậy C < D

 

 

9 tháng 7 2023

\(C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)

\(D=\dfrac{2018^{2017}}{2018^{2013}+1}=\dfrac{2018^{2013}.2018^4}{2018^{2013}+1}=\dfrac{\left(2018^{2013}+1-1\right).2018^4}{2018^{2013}+1}=2018^4-\dfrac{2018^4}{2018^{2013}+1}\)

mà \(2018^4< 2018^{2011}\)

\(\Rightarrow D=2018^4-\dfrac{2018^4}{2018^{2013}+1}< 2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}\)

mà \(2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}< C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)

\(\Rightarrow D< C\)

25 tháng 4 2019

< hoặc =

19 tháng 7 2023

\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)

\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)

\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)

\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)

\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)

\(=2022+2020-3061800-6\)

\(=-3057764\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$

$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$

$=-(9+14+19+...+2019+2024)$

Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$

1 tháng 10 2019

1/ D=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)=0+0+...+0=0

Câu 2 ghép tương tự

2 tháng 10 2019

ai có thể làm luôn câu C không ạ

4 tháng 6 2021

khó quá bẹn gì đấy ơi

23 tháng 12 2023

Số số hạng là:

\(\dfrac{2019-2011}{1}+1=8+1=9\left(số\right)\)

Tổng của dãy số là:

\(\left(2011+2019\right)\cdot\dfrac{9}{2}=18135\)