Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
b: \(DA\cdot DB+EA\cdot EC\)
\(=HD^2+HE^2\)
\(=AH^2=HB\cdot HC\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{32}=4\sqrt{2}\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\)cm
* Áp dụng hệ thức :\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)cm
-> HC = BC - HB = 4\(\sqrt{2}\)- 2\(\sqrt{2}\) = 2 \(\sqrt{2}\)
sinB = \(\dfrac{AC}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
cosB = \(\dfrac{AB}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
tanB = \(\dfrac{AC}{AB}=\dfrac{4}{4}=1\)
cotaB = \(\dfrac{AB}{AC}=\dfrac{4}{4}=1\)
tương tự với tỉ số lượng giác ^C
b, bạn cần cm cái gì ? ;-;
b: Xét tứ giác AEHD có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật
Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(BD\cdot DA=DH^2\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(CE\cdot EA=EH^2\)
Xét ΔEHD vuông tại H, ta được:
\(ED^2=EH^2+HD^2\)
hay \(ED^2=DA\cdot DB+EA\cdot EC\)
d: tan B=AC/AB
sin B=AC/BC
AB<BC(ΔABC vuôngtại A)
=>AC/AB>AC/BC
=>tanB>sin B
b: Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*20=12*16
=>AH=9,6cm
Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5
nên góc B=53 độ
=>góc C=37 độ
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*20=12*16=192
=>AH=9,6cm
c:
HB=AB^2/BC=12^2/20=7,2cm
HC=16^2/20=12,8cm
ΔAHB vuông tại H có HE là đường cao
nên HE*AB=AH*HB
=>HE*12=7,2*4,8
=>HE=2,88(cm)
ΔAHC vuông tại H có FH là đường cao
nên HF*AC=HA*HC
=>HF*16=4,8*12,8
=>HF=12,8*0,3=3,84(cm)
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)
2: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)
3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
Bài 4:
a: góc C=90-40=50 độ
Xét ΔABC vuông tại A có sin C=AB/BC
nên \(AB=10\cdot sin50=7.66\left(cm\right)\)
=>AC=6.43(cm)
b: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>AH=DE(1)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\left(2\right)\)
Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)
c: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)