Bài 1:Cho  ABC vuông ở A ,  M bất kỳ thuộ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

giup mình với mai đi hc rồi

15 tháng 2 2020

Gọi giao điểm của AM và DE là O

a) Dễ chứng minh ADME là hình chữ nhật => AM = DE

Để ADME là hình vuông thì AM là tia phân giác của ^BAC => M là chân đường phân giác kẻ từ A đến BC

b) Tam giác AHM vuông tại H => HO = AO = MO = DO = EO

Xét tam giác DHE có HO = DO = EO => tam giác DHE vuông tại H => đpcm

c) Ta sẽ chứng minh HK = MN

Theo Talet : \(\frac{HK}{BK}=\frac{AD}{BD}\Rightarrow HK=\frac{BK\cdot AD}{DB}=\frac{BK\cdot ME}{DB}\)

Theo hệ thức lượng tam giác MEC có: \(ME^2=MN.MC\Rightarrow MN=\frac{ME^2}{MC}\)

Ta cần chứng minh: \(\frac{ME^2}{MC}=\frac{BK\cdot ME}{BD}\)

\(\Leftrightarrow\frac{ME}{MC}=\frac{BK}{DB}\)

Lại có tam giác BKD đồng dạng tam giác MNE => \(\frac{BK}{BD}=\frac{MN}{ME}\)

\(\Rightarrow\frac{ME}{MC}=\frac{MN}{ME}\Leftrightarrow ME^2=MC\cdot MN\) ( luôn đúng theo hệ thức lượng )

Do đó ta có HK = MN

<=> HK + HM = MN + HM

<=> KM = HN ( đpcm )

c) đang nghĩ :)

15 tháng 2 2020

thôi ko nghĩ nữa đâu, a bận rồi =)) sorry mấy đứa

8 tháng 2 2022

jjjjjjjjjj

Hình Tự kẻ

Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE

Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E

Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC  , suy ra MA.MC=MD.ME

Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC

A B C M D E

a, Xét tam giác ABC và tam giác DBE có :

              góc B chung 

              góc BAC = góc BDE (=90độ )

Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )

b, Xét tam giác MAE và tam giác MDC có :

              góc MAE = góc MDC ( = 90độ )

              góc AME = góc DMC ( đối đỉnh )

Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )

\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)

\(\Rightarrow MA.MC=MD.ME\)

c,d :  Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .

Học tốt

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2