Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
Bài 1:
a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)
\(=\dfrac{9}{20}-\dfrac{2}{9}\)
\(=\dfrac{41}{180}\)
b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)
\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)
\(=\dfrac{5}{6}\times\dfrac{12}{7}\)
\(=\dfrac{10}{7}\)
c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)
\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{7}{9}\times1\)
\(=\dfrac{7}{9}\)
Bài 2:
a) \(2\times\left(x-1\right)=4026\)
\(\left(x-1\right)=4026\div2\)
\(x-1=2013\)
\(x=2014\)
Vậy: \(x=2014\)
b) \(x\times3,7+6,3\times x=320\)
\(x\times\left(3,7+6,3\right)=320\)
\(x\times10=320\)
\(x=320\div10\)
\(x=32\)
Vậy: \(x=32\)
c) \(0,25\times3< 3< 1,02\)
\(\Leftrightarrow0,75< 3< 1,02\) ( S )
=> \(0,75< 1,02< 3\)
a) \(2xy+2x-y=8\)
\(\Rightarrow\ 2x\left(y+1\right)-\left(y+1\right)=7\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=7\)
\(\Rightarrow\left[\begin{matrix}\begin{cases}2x-1=-7\\y+1=-1\end{cases}\\\begin{cases}2x-1=-1\\y+1=-7\end{cases}\end{matrix}\right.\left[\begin{matrix}\begin{cases}2x-1=7\\y+1=1\end{cases}\\\begin{cases}2x-1=1\\y+1=7\end{cases}\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=4\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=1\\y=6\end{cases}\\\left[\begin{matrix}\begin{cases}x=-3\\y=-2\end{cases}\\\begin{cases}x=0\\y=-8\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
c)\(x^2+xy+x+y=2\)
\(\Leftrightarrow x\left(x+1\right)+y\left(x+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+1\right)=2\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x+y=2\\x+1=1\end{cases}\\\begin{cases}x+y=1\\x+1=2\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x+y=-2\\x+1=-1\end{cases}\\\begin{cases}x+y=-1\\x+1=-2\end{cases}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=0\\y=2\end{cases}\\\begin{cases}x=1\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-2\\y=0\end{cases}\\\begin{cases}x=-3\\y=2\end{cases}\end{matrix}\right.\end{matrix}\right.\)
a) \(\frac{x+1}{8}=\frac{15}{3}\Rightarrow3.\left(x+1\right)=15.8\)
\(\Rightarrow3x+3=120\)
\(\Rightarrow3x=117\)
\(\Rightarrow x=39\)
Vậy x = 3
b) \(\frac{x}{20}=\frac{5}{x}\Rightarrow x^2=20.5\)
\(\Rightarrow x^2=100\)
\(\Rightarrow x=\pm10\)
Vậy x={10;-10}
bạn MMS làm đúng quá