Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-22<x<23
=>xE{-21;-20;...;21;22}
Tổng các số nguyên x là :-21+(-20)+...+21+22=(-21+21)+(-20+20)+...+(-1+1)+0+22=0+0+...+0+22=22
b)Nếu a dương thì S=a+|a|+...+|a|=a+a+...+a=2014a
Nếu a âm thì S=(-a)+|a|+....+(-a)+|a|=(-a-a-...-a)+(a+a+....+a)=1002(-a)+1002a=1002(a-a)=1002*0=0
Bài 1:a) |x - 3| = 2x + 4
=> \(\orbr{\begin{cases}x-3=2x+4\\x-3=-2x-4\end{cases}}\)
=> \(\orbr{\begin{cases}x-2x=4+3\\x+2x=-4+3\end{cases}}\)
=> \(\orbr{\begin{cases}-x=7\\3x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-7\\x=-\frac{1}{3}\end{cases}}\)
Vậy ...
b) Để M có giá trị nguyên thì 2n - 7 \(⋮\)n - 5
<=> 2(n - 5) + 3 \(⋮\)n - 5
<=> 3 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy ...
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Bài 1:
Số tự nhiên lớn nhất có 3 chữ số là: 999.
Ta có: 999 : 75 = 13(dư 24)
Vậy, số tự nhiên lớn nhất có 3 chữ số chia 75 có thương và số dư bằng nhau là:
75 . 13 + 13 = 988
Bài 2:
S = 1 x 2 + 2 x 3 + 3 x 4 + ... + n(n + 1)
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + n(n + 1) x (n + 2 - 3)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 3 x 4 x 2 + ... + n(n + 1)(n + 2) - n(n + 1) x 3
= n(n + 1) x 3
S = n(n + 1)
Bài 1: \(3\left(x-2\right)-2\left(x+1\right)=3\)
\(\Leftrightarrow3x-6-2x-2=3\)
\(\Leftrightarrow x=11\)
Vậy x = 11
Bài 2: x + 11 chia hết cho x-2
<=> (x-2)+13 chia hết cho x-2
<=> 13 chia hết cho x-2
<=> x-2 thuộc Ư(13) = {-1;1;13;-13}
Ta lập bảng:
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
Vậy x = {-11;1;3;15}
b) 2x+11 chia hết cho x-1
<=> 2(x-1)+9 chia hết cho x-1
Vì 2(x-1) đã chia hết cho x-1
=> 9 phải chia hết cho x-1
<=> x-1 thuộc Ư(9)={1;-1;3;-3;9;-9}
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
Vậy x = {-8;-2;0;2;4;10}
Bài 3:
a) a.(b-2)=5=1.5=5.1=(-5).(-1)=(-1).(-5)
a | 1 | 5 | -1 | -5 |
b-2 | 5 | 1 | -5 | -1 |
b | 7 | 3 | -3 | 1 |
Vậy (a;b) = (1;7) ; (5;3) ; (-1;-3) ; (-5;1)
b) Tương tự
bài 1 : \(3.\left(x-2\right)-2.\left(x+1\right)=3\)
\(=>3x-6-2x-2=3\)
\(=>x=3+6+2=11\)
bài 2 :
a,\(x+11⋮x-2\)
\(=>x-2+13⋮x-2\)
\(Do:x-2⋮x-2\)
\(=>13⋮x-2\)
\(=>x-2\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-11;1;3;15\right\}\)
b,\(2x+11⋮x-1\)
\(=>x.\left(x-1\right)+13⋮x-1\)
\(Do:x.\left(x-1\right)⋮x-1\)
\(=>13⋮x-1\)
\(=>x-1\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-12;0;2;14\right\}\)