\(\dfrac{x^3}{3}\)-mx\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 7 2017

Bài 1:

Hàm đồng biến khi mà \(y'=x^2-2mx-2\geq 0\forall x\in\mathbb{R}\)

\(\Leftrightarrow \Delta'=m^2+2\leq 0\). Điều này vô lý nên không tồn tại $m$ thỏa mãn

Bài 2:

Hàm đồng biến khi mà \(y'=-\frac{4x^2+4x+3+2m}{(2x+1)^2}\geq 0\) với mọi $x$ thuộc TXĐ

\(\Leftrightarrow 4x^2+4x+3+2m\leq 0\forall x\in\mathbb{R}\setminus \frac{-1}{2}\)

\(\Leftrightarrow m\leq -2(x^2+2x+1,5)\Leftrightarrow m\leq \min (-2x^2-2x-1,5)\)

Điều này vô lý vì không tồn tại min của \(-2x^2-2x-1,5\forall x\in\mathbb{R}\setminus\frac{-1}{2}\)

Vậy không tồn tại $m$ thỏa mãn.

27 tháng 8 2017

wtf ý nào k làm dc thì up nên chứ up hết bài nên cho người ta làm hộ thì có học được cái j đâu

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

15 tháng 10 2015

ta tính \(y'=3x^2-6x-m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

mà ta có \(y'=3x^2-6x-m\)>0 khi và chỉ khi \(\Delta=b^2-4ac<0\) do hệ số a của y' >0

mà \(\Delta=6^2+12m=36+12m<0\Rightarrow m<-3\)

vậy với m<-3 thì hàm số đồng biến trên R

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

29 tháng 9 2016

TXĐ D=R

\(y'=-x^2+\left(2m+4\right)x-4\)

\(\Delta'=m^2+4m\)

để hàm số đồng biến trên đoạn có độ dài = 2,

 y'=0, hàm số có hai nghiệm phân biệt thỏa:

\(\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=2\end{cases}=\begin{cases}m^2+4m>0\left(1\right)\\\left(x_1+x_2\right)^2-4x_1x_2=4\left(2\right)\end{cases}}\)

 

 

 

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

19 tháng 4 2016

Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)

\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3

Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]