Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=6x-x^2+10\)
\(-A=x^2-6x+10\)
\(-A=\left(x^2-6x+9\right)+1\)
\(-A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\Leftrightarrow A\le-1\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Max}=-1\Leftrightarrow x=3\)
1)
A=(x-2)^2-1
ta co (x-2)^2>=0 moi x thuoc R
(x-2)^2-1>=-1 moi.....
hay A>=-1
vay gia tri nho nhat cua bieu thuc A=1<=> x-2=0 => x=2
2)
C= 3:(x-2)^2+5
ta co (x-2)^2>=0 moi ...
3:(x-2)^2= <0 moi...
3:(x-2)^2+5=<5moi...
hay C=<5 moi...
vay gia tri lon nhat cu bieu thuc C=5<=>x-2=0=>x=2
xin loi ban minh chi lam dc the thoi
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
\(C=x^2+2x+1\dfrac{1}{2}\\ \Rightarrow C=\left(x^2+2x+1\right)+\dfrac{1}{2}\\ \Rightarrow C=\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)
Vậy \(C_{min}=\dfrac{1}{2}\Leftrightarrow x=-1\)
\(C=x^2+2x+1\dfrac{1}{2}.\\ C=x^2+2x+1+\dfrac{1}{2}.\\ C=\left(x+1\right)^2+\dfrac{1}{2}.\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in R.\\ \dfrac{1}{2}>0. \)
\(\Rightarrow\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}.\)
Dấu "=" xảy ra khi \(x+1=0.\Leftrightarrow x=-1.\)
Vậy GTNN của biểu thức C là \(\dfrac{1}{2}\) khi x = -1.
a)
- Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)
\(\Rightarrow B\ge3\)
Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)
Vậy MinB=3 khi \(1\le x\le4\)
- Áp dụng tiếp Bđt kia ta có:
\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)
\(\Rightarrow C\ge1\)
Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)
Vậy MinC=1 khi \(1993\le x\le1994\)
- Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)
\(\Rightarrow x^2+\left|y-2\right|\ge0\)
\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)
\(\Rightarrow D\ge-5\)
Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)
Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)
b)Ta thấy:
\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow C\ge17,5\)
Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)
c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)
\(\Rightarrow M\ge1\)
Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)
Vậy MinM=1 khi \(2001\le x\le2002\)
ta có: |x|+10 > 10 với mọi x
=> \(\frac{-10}{\left|x\right|+10}\le-\frac{10}{10}=-1\)
=> \(\frac{-10}{\left|x\right|+10}\) có GTLN là -1 <=> |x| +10=10 <=>x=0
Vậy GTLN của ps là -1 tại x=0
ko có GTNN đâu bn,nên ta tìm GTLN thôi