Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì \(\overline{abcd},\overline{ab}\) và \(\overline{ac}\) là các số nguyên tố
\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)
Ta có:
\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)
\(=10c+d-c=10c-c+d=9c+d\)
Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)
\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)
Ta có các trường hợp sau:
\(*)\) Nếu \(b=7\) ta có:
\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)
Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)
Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)
\(*)\) Nếu \(b=9\) ta có:
\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)
\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)
\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)
\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)
Mặt khác \(a\ne0\Rightarrow a=1\)
Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)
a) Ta có:
\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)
Vì \(p\) là số nguyên tố nên \(p\) \(⋮̸\) \(2;3;7\)
Các hợp số bé hơn \(42\) và không chia hết cho \(2\) là:
\(9;15;21;25;27;33;35;39\)
Lại đi các số không chia hết cho \(3;7\) ta được \(r=25\)
Vậy \(r=25\)
b) Giải:
Vì \(\overline{ab}^2\) là số chính phương nên \(\left(a+b\right)^3\) là số chính phương
\(\Rightarrow a+b\) là số chính phương.
Đặt \(a+b=x^2\Rightarrow\left(a+b\right)^3=\left(x^2\right)^3=x^6\)
\(\Rightarrow\left\{{}\begin{matrix}x^3< 100\\x^3>8\end{matrix}\right.\)\(\Rightarrow8< x^3< 100\Rightarrow2< x^3< 5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\x=4\end{matrix}\right.\) vì \(x\in N\). Xét từng trường hợp ta có:
Nếu \(x=3\Rightarrow3^6=729=27^2=\left(2+7\right)^3\) (chọn)
Nếu \(x=4\Rightarrow4^6=4096=64^2\ne\left(6+4\right)^3\) (loại)
Vậy số tự nhiên cần tìm là \(27\)
Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
số nguyên tố nhỏ nhất : 2
số lớn nhất có 1 chữ số : 9
số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5
số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5
abcd = 2955
Số nguyên tố nhỏ nhất là 2 => a = 2
Số lớn nhất có 1 chữ số là 9 => b = 9
Số nguyên tố chia hết cho 5 là 5 => c = 5
Số nhỏ nhất chia hết cho 5 là 0 => d = 0
abcd = 2950. Năm đó là năm 2950
Mình thấy nó vô lí thế nào ấy
Bài 1:
Ta có:
\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)
Vì \(p\) là số nguyên tố nên \(r\) \(⋮̸\) \(2;3;7\)
Các hợp tố nhỏ hơn \(42\) và \(⋮̸\) \(2\) là:
\(9;15;21;25;27;33;35;39\)
Loại đi các số chia hết cho \(3\) ta có các số:
\(25;35\)
Loại đi các số chia hết cho \(7\) ta có các số:
\(25\)
\(\Rightarrow r=25\)
Vậy \(r=25\)