\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a) Ta có:

\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)

\(p\) là số nguyên tố nên \(p\) \(⋮̸\) \(2;3;7\)

Các hợp số bé hơn \(42\) và không chia hết cho \(2\) là:

\(9;15;21;25;27;33;35;39\)

Lại đi các số không chia hết cho \(3;7\) ta được \(r=25\)

Vậy \(r=25\)

b) Giải:

\(\overline{ab}^2\) là số chính phương nên \(\left(a+b\right)^3\) là số chính phương

\(\Rightarrow a+b\) là số chính phương.

Đặt \(a+b=x^2\Rightarrow\left(a+b\right)^3=\left(x^2\right)^3=x^6\)

\(\Rightarrow\left\{{}\begin{matrix}x^3< 100\\x^3>8\end{matrix}\right.\)\(\Rightarrow8< x^3< 100\Rightarrow2< x^3< 5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)\(x\in N\). Xét từng trường hợp ta có:

Nếu \(x=3\Rightarrow3^6=729=27^2=\left(2+7\right)^3\) (chọn)

Nếu \(x=4\Rightarrow4^6=4096=64^2\ne\left(6+4\right)^3\) (loại)

Vậy số tự nhiên cần tìm là \(27\)

2 tháng 4 2017

Vào đây nhé bạn: Câu hỏi của Công chúa Fine - Toán lớp 7 | Học trực tuyến

16 tháng 2 2017

Bài 1:

Ta có:

\(p=42k+r=2.3.7.k+r\left(k,r\in N;0< r< 42\right)\)

\(p\) là số nguyên tố nên \(r\) \(⋮̸\) \(2;3;7\)

Các hợp tố nhỏ hơn \(42\)\(⋮̸\) \(2\) là:

\(9;15;21;25;27;33;35;39\)

Loại đi các số chia hết cho \(3\) ta có các số:

\(25;35\)

Loại đi các số chia hết cho \(7\) ta có các số:

\(25\)

\(\Rightarrow r=25\)

Vậy \(r=25\)

17 tháng 3 2018

a, Giả sử tồn tại a,b thỏa mãn đề bài

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)

Mà a,b là số nguyên dương => ab > 0

=> Mâu thuẫn

=> Giả sử sai

Vậy không tồn tại a,b thỏa mãn đề

b, https://olm.vn/hoi-dap/question/1231.html

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

25 tháng 8 2019

QUÊN TOÁN 8

25 tháng 8 2019

1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố

TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)

=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)