K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

đó là số 27

em mới học lớp 6 thôi

20 tháng 2 2017

Ths em

28 tháng 2 2018

Bạn tham khảo ở đây nha !https://hoc24.vn/hoi-dap/question/567105.html

20 tháng 11 2018

Câu hỏi của Rosenaly - Toán lớp 7 | Học trực tuyến

28 tháng 2 2018

\(\overline{ab^2}=\left(a+b\right)^3\) nên (a + b) phải là số chính phương.

Đặt a+b=\(x^2\)

\(\Rightarrow\left(a+b\right)^3=\overline{ab^2}\\ \Leftrightarrow x^6=\overline{ab^2}\\ \Leftrightarrow x^3=\overline{ab}\)

Vì 9 < \(\overline{ab}\)<100 \(\Rightarrow9< x^3< 100\\ \Leftrightarrow x\in\left\{3;4\right\}\)

Xét 2 trường hợp:

\(TH1:x=3\\ \Rightarrow\left(a+b\right)^3=\left(3^2\right)^3=729\\ \Leftrightarrow27^2=\left(2+7\right)^3\left(tm\right)\)

\(TH2:x=4\\ \Rightarrow\left(a+b\right)^3=\left(4^2\right)^3=4096\\ \Leftrightarrow64^2=\left(6+4\right)^3\left(loại\right)\)

Vậy \(\overline{ab}=27\)

6 tháng 12 2017

Bạn tham khảo ở đây:

Câu hỏi của Ho Thi Ly - Toán lớp 6 - Học toán với OnlineMath

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

12 tháng 4 2018

Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)

\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)

\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)

16 tháng 1 2019

ta để dàng thấy được : \(a;b\) là 2 số lẽ khác \(5\)

\(\overline{\left(a+1\right)b}\) là số có 2 chữ số \(\Rightarrow\) \(a;b\) khác 9

\(\Rightarrow a;b\in\left\{1,3,7\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;1\right);\left(1;3\right)\left(1;7\right);\left(3;1\right);\left(3;3\right);\left(3;7\right);\left(7;1\right);\left(7;3\right)\left(7;7\right)\)

thay lại lần lược ta thấy \(\left(1;1\right);\left(1;3\right)\left(3;1\right);\left(3,7\right);\left(7;3\right)\) thõa mãn bài toán

vậy ...

15 tháng 1 2019

dễ thấy a;b=0 => loại
với a;b đồng thời bằng 1 => loại
=> a>=1 với
a=1 => (a+1)b= 2b là số nguyên tố => b=1
khi đó ab=1 => loại
=> a>1
*với a=2 =>ab=2b là số nguyên tố => b=1
=> (b+1)a=2a là số nguyên tố => a=1 (vô lý)
*với a>2 => a lẻ => a+1 chẵn => (a+1).b chia hết cho 2 và >2 => loại
vậy ko có số tự nhiên a;b thỏa mãn