Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy E sao cho A là trung điểm của CE
Xét ΔEBC có
BA là đường trung tuyến
BA=CE/2
Do đó: ΔEBC vuông tại E
Xét ΔCBE có AH//BE
nên AH/BE=CH/CB=1/2
=>AH=1/2BE
Xét ΔBEC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)
=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=EF(hai đường chéo)
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
góc BAM=góc DAN
=>ΔABM=ΔADN
=>AM=AN
=>ΔAMN vuông cân tại A
b: 1/AM^2+1/AE^2
=1/AN^2+1/AE^2
=1/AD^2 ko đổi
Ok!
Ta có: \(\dfrac{AK}{KC}=2.\left(\dfrac{AB}{BC}\right)^2-1\)
\(\Leftrightarrow\dfrac{AK}{KC}+1=2.\dfrac{AB^2}{BC^2}\)
\(\Leftrightarrow\dfrac{AK+KC}{KC}=2.\dfrac{AB.AC}{BC^2}\)
\(\Leftrightarrow\dfrac{AC}{KC}=\dfrac{2AB.AC}{BC^2}\) \(\Leftrightarrow\dfrac{1}{KC}=\dfrac{2AB}{BC^2}\)
\(\Leftrightarrow BC^2=KC.2AB\)
\(\Leftrightarrow BK^2+KC^2=2AB.KC\)
\(\Leftrightarrow AB^2-AK^2+KC^2=2AB.KC\)
\(\Leftrightarrow\left(AB-KC\right)^2=AK^2\)
\(\Leftrightarrow AB-KC=AK\)
\(\Leftrightarrow AB=AK+KC=AC\) ( Luôn đúng)
\(\Rightarrowđpcm\)
P/s: Gợi ý câu a:Từ H kẻ đt // AH cắt BC tại I Áp dụng hệ thức 4
Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)
Bài 3:
Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng với ΔACB
=>ED/CB=AE/AC=(cos60)=1/2
=>ED=1/2CB=EM=DM
=>ΔMDE đều