Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2a}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)
\(=>a^2c+b^2a+c^2a=b^2c+c^2a+a^2b\)
Vì \(c^2a=c^2a\)=> \(a^2c+b^2a=b^2c+a^2b\)
=>đpcm, hình như mình giải thiếu điều kiện thì phải
\(abc\ne0\)
\(abc\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)=abc\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
\(\Leftrightarrow a^2c+ab^2+bc^2=b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-b^2c+ab^2-a^2b+bc^2-ac^2=0\)
\(\Leftrightarrow c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ac+bc-ab-c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(c\left(a-c\right)-b\left(a-c\right)\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(c-b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) (đpcm)
Lời giải:
Ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
\(\Leftrightarrow \frac{ab^2+bc^2+ca^2}{abc}=\frac{a^2b+b^2c+c^2a}{abc}\)
\(\Leftrightarrow ab^2+bc^2+ca^2=a^2b+b^2c+c^2a\)
\(\Leftrightarrow ab^2+bc^2+ca^2-a^2b-b^2c-c^2a=0\)
\(\Leftrightarrow ab(b-a)+bc(c-b)+ac(a-c)=0\)
\(\Leftrightarrow ab(b-a)-bc[(b-a)+(a-c)]+ac(a-c)=0\)
\(\Leftrightarrow (b-a)(ab-bc)+(a-c)(ac-bc)=0\)
\(\Leftrightarrow b(b-a)(a-c)-c(a-c)(b-a)=0\)
\(\Leftrightarrow (b-a)(a-c)(b-c)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=a\\a=c\\b=c\end{matrix}\right.\)
Do đó luôn tồn tại hai số bằng nhau (đpcm)
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)
\(\Rightarrow\dfrac{a^2c}{abc}+\dfrac{b^2a}{abc}+\dfrac{c^2b}{abc}=\dfrac{b^2c}{abc}+\dfrac{a^2b}{abc}+\dfrac{c^2a}{abc}\)
\(\Rightarrow\dfrac{a^2c+b^2a+c^2b}{abc}=\dfrac{b^2c+a^2b+c^2a}{abc}\)
\(\Rightarrow a^2c+b^2a+c^2b=b^2c+a^2b+c^2a\)
\(\Rightarrow a^2c+b^2a+c^2b-b^2c-a^2b-c^2a=0\)
\(\Rightarrow\left(a^2c-c^2a\right)+\left(b^2a-a^2b\right)+\left(c^2b-b^2c\right)=0\)
\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b\right)=0\)
\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b+a-a\right)=0\)
\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-a\right)+bc\left(a-b\right)\)
\(\Rightarrow c\left(a-c\right)\left(a-b\right)+b\left(a-b\right)\left(c-a\right)=0\)
\(\Rightarrow c\left(a-c\right)\left(a-b\right)-b\left(a-b\right)\left(a-c\right)=0\)
\(\Rightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}c=b\\a=c\\a=b\end{matrix}\right.\)(Tồn tại ít nhất 2 số bằng nhau)
ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c=\frac{ba+ac+ab}{abc}\)
mà abc = 1
\(\Rightarrow a+b+c=ba+ac+ab\)
Lại có: (a-1).(b-1).(c-1)
= (ab - a - b + 1) . ( c-1)
= abc - ac - bc + c - ab + a + b - 1
= ( abc - 1) +( a+ b + c ) - ( ac + bc + ab)
= ( 1 - 1) + ( a + b + c) - ( a + b + c)
= 0
=> (a-1).(b-1).(c-1) = 0
=> trong 3 số a;b;c tồn tại một số bằng 1
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(\Leftrightarrow\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=0\)
\(\Leftrightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)
\(\Rightarrowđpcm\)
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)
\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)
\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)
\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)
\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)
\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)
\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Do đó trong a , b , c luôn có 2 số đối nhau.
Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)
\(\Rightarrow a^n=-b^n\)(Vì n lẻ )
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)
\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Vậy ...
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
a/b+b/c+c/a=b/a+c/b+a/c
<=> a/b-b/a+b/c-c/b+c/a-a/c=0
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0
<=> ac(a-c)+bc(c-b)+ab(b-a)=0
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0
<=> (a-c)(a-b)c+(a-b)(c-a)b=0
<=> (a-b)(c-a)(b-c)=0
<=> a=b hay c=a hay b=c
Vậy trong ba số a,b,c tồn tại 2 số =nhau