Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hàng dọc nhiều nhất là \(ƯCLN\left(44,40,36\right)=4\) hàng
Khi đó mỗi hàng lp 6A có 44:4=11(hs)
Khi đó mỗi hàng lp 6B có 40:4=10(hs)
Khi đó mỗi hàng lp 6C có 36:4=9(hs)
Mỗi lớp xếp được thành 4 hàng
Lớp 6A:11hs
Lớp 6B:10hs
Lớp 6C:9hs
Gọi số hàng dọc nhiều nhất có thể là x(x∈N*)
Ta có \(42=2\cdot3\cdot7;48=2^4\cdot3;54=2\cdot3^3\)
\(\Rightarrow x=ƯCLN\left(42,48,54\right)=2\cdot3=6\)
Vậy số hàng dọc nhiều nhất là 6
Gọi số hàng dọc nhiều nhất có thể là x(x∈N*)
⇒ \(44=2^2.11;48=2^4.3;40=2^3.5\)
\(\RightarrowƯCLN\left(44;48;40\right)=2^2=4\)
Có thể xếp số hàng dọc nhiều nhất là 4
Gọi số hàng dọc nhiều nhất có thể chia là x
⇒ x = ƯCLN(36; 32; 48)
Ta có:
\(36=2^2\cdot3^2\)
\(32=2^5\)
\(48=2^4\cdot3\)
\(\Rightarrow x=ƯCLN\left(36;32;48\right)=2^2=4\) (hàng)
Vậy: ...
a) Gọi số hàng dọc xếp thành nhiều nhất là \(a\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(300⋮a\)
\(276⋮a\)
\(252⋮a\)
Vì a lớn nhất \(\Rightarrow\) \(a\inƯCLN\left(300;276;252\right)\)
\(300=2^2.3.5^2\)
\(276=2^2.2.23\)
\(252=2^2.3^2.7\)
\(ƯCLN\left(300;276;252\right)=2^2.3=12\)
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng.
Khi đó khối 6 có số hàng ngang là:
\(300\div12=25\) ( hàng )
Khi đó khối 7 có số hàng ngang là:
\(276\div12=23\) ( hàng )
Khi đó khối 8 có số hàng ngang là:
\(252\div12=21\) ( hàng )
b) Gọi số học sinh của trường đó là \(x\left(x\inℕ^∗,x>900\right)\)
Vì xếp hàng 3, hàng 4, hàng 5 đều đủ, ta có:
\(x⋮3\)
\(x⋮4\)
\(x⋮5\)
Vì x nhỏ nhất \(\Rightarrow\) \(x\in BCLN\left(3;4;5\right)\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(\Rightarrow\)\(BCLN\left(3;4;5\right)=2^2.3.5=60\)
\(\Rightarrow\)\(BC\left(3;4;5\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;400;...;780;900;960;1020;...\right\}\)
Vì \(x>900\) và x là một số có 3 chữ số \(\Rightarrow\) \(x\in960,x=960\)
Vậy trường đó có \(960\) học sinh