Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để xếp mỗi khối đều ko ai lẻ hàng thì số hàng dọc sẽ là ước chung của 300; 276 và 252.
Ư(300)= 1;2;3;4;5;6;10;12;15;20;25;30;;50;60;75;100;150;300
Ư(276)= 1;2;3;4;6;12;23;46;69;92;138;276
Ư(252)= 1;2;3;4;6;7;9;12;14;18;21;28;36;42;63;84;126;252
ƯC(300;276;252)= 1;2;3;4;6;12.
Vậy có thể xếp nhiều nhất 12 hàng dọc.
Khi đó khối 6 có: 300:12=25 (hàng ngang)
__nt__khối 7 có: 276:12=23 (hàng ngang)
__nt__khối 8 có: 252:12=21 (hàng ngang)
Ba khối 6,7,8 theo thứ tự có 300, 276, 252 học sinh xếp hàng dọc sao cho số hàng dọc của mỗi khối như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng. Khi đó đó ở mỗi khối có bao nhiêu hàng ngang.
Số hàng xếp nhiều nhất chính là ƯCLN (300, 276, 252).
Ta có: 300 = 22.3.52; 276=22.3.23; 252=22.32.7
=> ƯCLN (300, 276, 252)=22.3=12
-> Vậy có thể xếp nhiều nhất 12 hàng, khi đó mỗi hàng:
+) Khối 6 là: 300:12=25 (em)
+) Khối 7 là: 276:12=23 (em)
+) Khối 8 là: 252:12=21 (em).
Xếp được nhiều nhất 12 hàng dọc , hàng ngang là 1 .
Để xếp không ai lẻ hàng thì số hàng là ước của số học sinh.
Mà cần tìm số hàng là lớn nhất nên số hàng là \(ƯCLN\left(300,276,252\right)\).
Phân tích thành tích các thừa số nguyên tố:
\(300=2^2.3.5^2,276=2^2.3.23,252=2^2.3^2.7\)
suy ra \(ƯCLN\left(300,276,252\right)=2^2.3=12\)
Vậy có thể xếp nhiều nhất thành \(12\)hàng dọc.
Khi đó khối 6 có \(\frac{300}{12}=25\)hàng ngang, khối 7 có \(\frac{276}{12}=23\)hàng ngang, khối 8 có \(\frac{252}{12}=21\)hàng ngang.
Số hàng xếp nhiều nhất là UCLN(300;276;252)
Ta có :
300 = 2^2.5.3^2
276 = 2^3.3.23
252 = 2^2.3^2.7
=> UCLN (300;276;252)
= 2^2.3=12
Vậy có thể xếp nhiều nhất 12 hàng, vậy khi đó mỗi hàng :
Khối 6 : 300 : 12 = 25 ( em HS )
Khối 7 : 276 : 12 = 23 ( em HS )
Khối 8 : 252 : 12 = 21 ( em HS )
a) Gọi số hàng dọc xếp thành nhiều nhất là \(a\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(300⋮a\)
\(276⋮a\)
\(252⋮a\)
Vì a lớn nhất \(\Rightarrow\) \(a\inƯCLN\left(300;276;252\right)\)
\(300=2^2.3.5^2\)
\(276=2^2.2.23\)
\(252=2^2.3^2.7\)
\(ƯCLN\left(300;276;252\right)=2^2.3=12\)
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng.
Khi đó khối 6 có số hàng ngang là:
\(300\div12=25\) ( hàng )
Khi đó khối 7 có số hàng ngang là:
\(276\div12=23\) ( hàng )
Khi đó khối 8 có số hàng ngang là:
\(252\div12=21\) ( hàng )
b) Gọi số học sinh của trường đó là \(x\left(x\inℕ^∗,x>900\right)\)
Vì xếp hàng 3, hàng 4, hàng 5 đều đủ, ta có:
\(x⋮3\)
\(x⋮4\)
\(x⋮5\)
Vì x nhỏ nhất \(\Rightarrow\) \(x\in BCLN\left(3;4;5\right)\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(\Rightarrow\)\(BCLN\left(3;4;5\right)=2^2.3.5=60\)
\(\Rightarrow\)\(BC\left(3;4;5\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;400;...;780;900;960;1020;...\right\}\)
Vì \(x>900\) và x là một số có 3 chữ số \(\Rightarrow\) \(x\in960,x=960\)
Vậy trường đó có \(960\) học sinh