Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hàng xếp nhiều nhất chính là ƯCLN (300, 276, 252).
Ta có: 300 = 22.3.52; 276=22.3.23; 252=22.32.7
=> ƯCLN (300, 276, 252)=22.3=12
-> Vậy có thể xếp nhiều nhất 12 hàng, khi đó mỗi hàng:
+) Khối 6 là: 300:12=25 (em)
+) Khối 7 là: 276:12=23 (em)
+) Khối 8 là: 252:12=21 (em).
để xếp mỗi khối đều ko ai lẻ hàng thì số hàng dọc sẽ là ước chung của 300; 276 và 252.
Ư(300)= 1;2;3;4;5;6;10;12;15;20;25;30;;50;60;75;100;150;300
Ư(276)= 1;2;3;4;6;12;23;46;69;92;138;276
Ư(252)= 1;2;3;4;6;7;9;12;14;18;21;28;36;42;63;84;126;252
ƯC(300;276;252)= 1;2;3;4;6;12.
Vậy có thể xếp nhiều nhất 12 hàng dọc.
Khi đó khối 6 có: 300:12=25 (hàng ngang)
__nt__khối 7 có: 276:12=23 (hàng ngang)
__nt__khối 8 có: 252:12=21 (hàng ngang)
Ba khối 6,7,8 theo thứ tự có 300, 276, 252 học sinh xếp hàng dọc sao cho số hàng dọc của mỗi khối như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng. Khi đó đó ở mỗi khối có bao nhiêu hàng ngang.
Số hàng xếp nhiều nhất chính là ƯCLN (300, 276, 252).
Ta có: 300 = 22.3.52; 276=22.3.23; 252=22.32.7
=> ƯCLN (300, 276, 252)=22.3=12
-> Vậy có thể xếp nhiều nhất 12 hàng, khi đó mỗi hàng:
+) Khối 6 là: 300:12=25 (em)
+) Khối 7 là: 276:12=23 (em)
+) Khối 8 là: 252:12=21 (em).
Xếp được nhiều nhất 12 hàng dọc , hàng ngang là 1 .
Để xếp không ai lẻ hàng thì số hàng là ước của số học sinh.
Mà cần tìm số hàng là lớn nhất nên số hàng là \(ƯCLN\left(300,276,252\right)\).
Phân tích thành tích các thừa số nguyên tố:
\(300=2^2.3.5^2,276=2^2.3.23,252=2^2.3^2.7\)
suy ra \(ƯCLN\left(300,276,252\right)=2^2.3=12\)
Vậy có thể xếp nhiều nhất thành \(12\)hàng dọc.
Khi đó khối 6 có \(\frac{300}{12}=25\)hàng ngang, khối 7 có \(\frac{276}{12}=23\)hàng ngang, khối 8 có \(\frac{252}{12}=21\)hàng ngang.
Gọi số hàng dọc xếp thành nhiều nhất là a ( a ∈ N* )
Theo đề bài ta có
300 ⋮a
276 ⋮ a
252 ⋮a
a lớn nhất
⇒⇒ a ∈∈ ƯCLN ( 300 ; 276 ; 252 )
300 = 22 . 3 . 52
276 = 22 . 3 . 23
252 = 22 . 32 . 7
a ∈∈ ƯCLN ( 300 ; 276 ; 252 ) = 22 . 3 = 12
⇒⇒ a ∈∈ { 12 } ( thỏa mãn điều kiện )
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng
Khi đó khối 6 có số hàng ngang là
300 : 12 = 25 ( hàng )
Khi đó khối 7 có số hàng ngang là
276 : 12 = 23 ( hàng )
Khi đó khối 8 có số hàng ngang là
252 : 12 = 21 ( hàng )
Giải :
Có thể xếp thành 12 hàng.
Giải thích các bước giải: Số hàng xếp nhiều nhất chính là ƯCLN (300,276,252 )
+ Ta có : 300 = 2² x 3 x 5² ; 276= 2 ²x 3 x 23 ; 252 = 2² x 3² x 7
=> ƯCLN (300, 276, 252) = 2² x 3 = 12
Vậy có thể xếp nhiều nhất 12 hàng, khi đó mỗi hàng có :
+) Khối 6 : 300 : 12 = 25 ( hàng )
+) Khối 7 : 276 : 12 = 23 ( hàng )
+) Khối 8 : 252 : 12 = 21 ( hàng )
~ HT ~
Ta có : 300 = \(2^2\cdot3\cdot5^2\)
\(276=2^2\cdot3.23\)
\(252=2^2.3^2\cdot7\)
=> UCLN( 300 , 276 , 252 ) = \(2^2\cdot3=12\)
Vậy có thể xếp được nhiều nhất thành 12 hàng dọc để mỗi khối đều không có ai lẻ hàng
Khi đó số hàng ngang ở khối 6 là : 300 : 12 = 25 ( hàng )
Khi đó số hàng ngang ở khối 7 là : 276 : 12 = 23 ( hàng )
Khi đó số hàng ngang ở khối 8 là : 252 : 12 = 21 ( hàng )
tìm ước chung lớn nhất nhé bạn
chịu nha.